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ABSTRACT 

Adoptive T cell therapy (ACT) in combination with lymphodepleting chemotherapy is an 

effective strategy to induce the eradication of tumors, providing long-term regression in cancer 

patients. However, only a minority of patients that receive ACT with tumor infiltrating 

lymphocytes (TILs) exhibit durable benefit. Thus, there is an urgent need to define strategies that 

potentiate anti-tumor activity conducted by adoptively transferred T cells. In these studies, we 

aimed to identify novel strategies to enhance the therapeutic efficacy of ACT. Accordingly, we 

describe the disparate roles of myeloid cells in the context of ACT characterized by the 

augmentation of TIL proliferation in the presence of 41BB-mediated co-stimulation and the 

dampening of anti-tumor immunity orchestrated by myeloid derived suppressor cells (MDSCs). 

The efficient expansion of T cells is a critical aspect of ACT, which is aided by culturing 

tumors and TILs in IL-2 and 41BB agonistic antibodies. However, the impact of 41BB-mediated 

co-stimulation conducted by constituent myeloid cells within tumors on the expansion of TILs is 

unclear. Here, we describe that the intratumoral administration of 41BB agonistic antibodies led 

to increases in CD8 T cell infiltration followed by tumor regression in murine models. We found 

that granulocytes and monocytes rapidly replaced macrophages and dendritic cells in tumors 

following administration of anti-41BB antibodies. Overall, myeloid cells from anti-41BB treated 

tumors had an improved capacity to stimulate T cells in comparison to myeloid cells from 

control treated tumors. In human co-culture systems, we demonstrated that the agonism of the 

41BB-41BBL axis enhanced co-stimulatory signals and effector functions among antigen 
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presenting cells and autologous TILs. Thus, myeloid-mediated co-stimulation is a critical factor 

in potentiating the proliferation of TILs and their anti-tumor activity.  

Despite that lymphodepleting regimens condition the host for optimal engraftment and 

expansion of adoptively transferred T cells, lymphodepletion concomitantly promotes 

immunosuppression during the course of endogenous immune recovery. Here, we have identified 

that lymphodepleting chemotherapy initiates the mobilization of hematopoietic progenitor cells 

that differentiate to immunosuppressive myeloid cells, leading to a dramatic increase of 

peripheral MDSCs. In melanoma and lung cancer patients, MDSCs rapidly expanded in the 

periphery within one week after completion of a lymphodepleting regimen and infusion of 

autologous tumor infiltrating lymphocytes (TIL). This expansion was associated with disease 

progression, poor survival, and reduced TIL persistence in melanoma patients. We demonstrated 

that the IL-6 driven differentiation of mobilized hematopoietic progenitor cells promoted the 

survival and immunosuppressive capacity of post-lymphodepletion MDSCs. Furthermore, the 

genetic abrogation or therapeutic inhibition of IL-6 in mouse models enhanced host survival and 

reduced tumor growth in mice that received ACT. Thus, the expansion of MDSCs in response to 

lymphodepleting chemotherapy may contribute to ACT failure and targeting myeloid-mediated 

immunosuppression may support anti-tumor immune responses.   

Collectively, we demonstrate that exploiting the immunostimulatory capacity of myeloid 

cells and the curtailment of myeloid-mediated immunosuppression are strategies that can 

augment the expansion and anti-tumor activity of TILs. The novel mechanistic insights of these 

studies highlight the importance of modulating myeloid cells to promote the therapeutic efficacy 

of ACT.  

 



www.manaraa.com

1 

 

 

 

  

 

CHAPTER ONE 

INTRODUCTION 

Adoptive T cell therapy for the treatment of human malignancies 

For nearly 30 years, the infusion of T cells possessing the capability of recognizing and 

eliminating tumor cells has been explored in patients with cancer. Early studies demonstrated 

that the administration of IL-2 could expand T cells in vivo, leading to durable regressions in 

patients with metastatic melanoma (1). This groundbreaking discovery was some of the first 

evidence that therapies targeting the immune system, but not tumor cells, could lead to the 

eradication of cancer in human subjects. Subsequent studies demonstrated that the ex vivo 

expansion of tumor infiltrating lymphocytes (TIL) followed by the infusion of these cells to 

patients with metastatic melanoma led to complete regression of disease (2). In recent years, 

adoptive T cell therapy (ACT) with TIL has led to complete regressions and possibly curative 

responses in patients with metastatic melanoma, breast cancer, human papilloma virus associated 

cancers, and colorectal cancer (3-6). To generate a clinical infusion product, first a tumor is 

surgically excised from a patient, fragmented, and then cultured in high concentrations of IL-2 

(7) (Figure 1). TILs will proliferate and egress from tumor fragments whereby their expansion is 

maintained for a few weeks in culture. Upon successful expansion, TILs are tested for tumor-

specific reactivity against the patient’s autologous tumor cells and/or human leukocyte antigen 

(HLA)-matched tumor cell lines that may share antigen specificity. The tumor-reactive TILs are 

determined via IFN-gamma production or upregulation of activation markers, including 41BB, 

and undergo a rapid expansion protocol (REP), which entails the culture of TILs with irradiated 
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allogeneic feeder cells with the addition of IL-2 and agonistic CD3 antibodies, routinely yielding 

>5x1010 cells (3, 8).  

While the infusion of autologous TILs has demonstrated that ACT is an effective 

treatment for patients with cancer, the genetic modification of T cells with the purpose of 

directing tumor-specificity has also been implemented in the clinic. Chimeric antigen receptor 

(CAR) T cells have shown great promise in treating and potentially curing patients with 

hematological malignancies. In contrast to ACT with TIL that utilizes the patient’s endogenous 

tumor-specific T cells, CAR T cells involve the engineering of patients’ peripheral T cells with a 

synthetic receptor that binds to a singular tumor antigen. The CAR is typically a construct of a 

single-chain variable fragment (scFv) of an antibody with known specificity, and components of 

the T cell receptor (TCR) synapse, CD3ζ and co-stimulatory domains, such as CD28 or 41BB 

(9). The CAR is forcefully expressed within T cells via transduction with a virus that encodes the 

scFv of an antibody and the components of the TCR synapse.  

CD19-directed CAR T cells have provided complete regressions in 90% of treated 

children, young adults, and older individuals with acute lymphoblastic leukemia (ALL) (10). The 

remarkable success of CAR T cell treatment in patients with hematological malignancies has 

catalyzed investigators to engineer T cells directed against antigens that are expressed in solid 

tumors (11). Exciting results have shown that tumor regression can occur after infusion of CAR 

T cells directed against antigens expressed in multiple cancers, including glioblastoma, 

pancreatic cancer, and neuroblastoma (12-15). However, the high complete response rates 

exhibited in patients treated with CD19-directed CAR T cells has not been observed in patients 

infused with CAR T cells directed against solid tumor antigens. Low response rates in patients 

with solid tumors treated with CAR T cells has been attributed to multiple resistance 
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mechanisms, including target antigen loss (16), ineffective T cell trafficking (17), and 

immunosuppression in the tumor microenvironment (18, 19). These findings have spurned 

investigators to further modify CAR T cells and apply other therapeutics in combination with 

ACT to potentiate enhanced anti-tumor efficacy (discussed later in this chapter).  

In addition to ACT with TILs or CAR T cells, the engineering of T cells to express a 

TCR that recognizes a single tumor antigen has proven to be efficacious in patients. In contrast 

to CAR T cells, transgenic-TCR T cells utilize endogenous TCRs that have specificity against 

tumor antigens and depend on antigen presentation through MHC (major histocompatibility 

complex). The cloned TCR is inserted into T cells, which forces their antigen specificity toward 

a particular tumor-antigen (20). A recent trial in patients with acute myeloid leukemia (AML) 

demonstrated that the infusion of T cells engineered to express TCRs specific for the Wilms 

Tumor 1 (WT1) antigen prevented disease relapse in 100% of patients after a hematopoietic stem 

cell transplant (HSCT) (21). However, much like the experience with CAR T cell therapy, the 

marked success of ACT with transgenic-TCR T cells is highly dependent on the disease, 

treatment strategy, and target-antigen specificity. Many transgenic-TCR T cells are designed to 

target shared or “self” antigens aberrantly expressed by tumor cells such as the New York 

Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1) antigen (22). Clinical trials that evaluated 

the efficacy of NY-ESO-1 specific transgenic-TCR T cells in patients with melanoma and 

synovial cell sarcoma demonstrated a partial response rate of 35% and 55% respectively, with 4 

of 20 melanoma patients and 1 of 18 sarcoma patients experiencing complete responses (23). In 

myeloma patients, ACT with NY-ESO-1 specific T cells in combination with autologous HSCT 

resulted in responses in 11 of 25 patients and a median progression-free survival of 13.5 months 

(24). While NY-ESO-1 is one of many target antigens, many other antigens expressed by tumor 
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cells have been explored for the development of transgenic-TCR T cells for multiple 

hematological and solid tumor malignancies (20).  

 
 

Figure 1. A schema of ACT with TILs. 

A tumor is surgically resected from a patient and fragmented. Tumor fragments are grown in media containing IL-2 

to promote TIL expansion. Expanded TILs are then tested for tumor-reactivity by culturing the TILs with autologous 

tumor cells and assessing the production of effector molecules, such as IFN-γ. The selected tumor-reactive TILs are 

then expanded under a REP to a magnitude typically >5x1010 cells. Prior to re-infusion, patients are lymphodepleted 

with non-myeloablative doses of cyclophosphamide and fludarabine. Image generated by: MacLean Hall and Luz 

Nagle, Dr. Shari Pilon-Thomas Laboratory. 
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Preparative lymphodepletion is essential to elicit durable therapeutic responses to ACT  

The infusion of melanoma-specific T cells can effectively kill tumor cells in patients, 

which can cause the cytotoxicity of non-malignant melanocytes as an “on-target/off-tumor” side 

effect since antigen epitopes for melanoma cells and melanocytes are shared (25). Despite that 

the killing of tumor cells can be elicited after the infusion of tumor-specific T cells in patients, 

clinical response rates were not consistently observed until ACT was combined with 

lymphodepleting chemotherapy and/or total body radiation TBI (2, 26). Lymphodepleting 

regimens typically consist of non-myeloablative (NMA) doses of cyclophosphamide and 

fludarabine and/or TBI (27). The rationale to combine ACT with lymphodepleting regimens was 

drawn from the experience of creating optimal conditions in a host to facilitate engraftment after 

HSCT. In HSCT regimens, complete myeloablation is induced via chemotherapy to 

simultaneously eliminate malignant immune cells, provide a niche for the engraftment of donor 

cells, and prevent tissue rejection after allogeneic transplantation (28). For ACT however, the 

goal of pre-conditioning regimens is to eliminate lymphocytes that compete for cytokines 

necessary for the proliferation and function of adoptively transferred T cells in vivo (discussed 

later in this chapter). Notably, most cancers are relatively sensitive to chemotherapy or 

radiotherapy. However, melanomas are largely resistant to chemotherapeutic agents and 

radiation therapy, particularly in comparison to immune-based therapies (29, 30). Hence, a 

lymphodepleting regimen for ACT purposes in melanoma patients does not provide therapeutic 

benefit. Rather, lymphodepleting doses of cyclophosphamide and fludarabine mainly facilitate 

the optimal engraftment of adoptively transferred TILs. In contrast, chemotherapy agents like 

cyclophosphamide and fludarabine in other malignancies, such as acute lymphoid leukemia 

(ALL), are therapeutically efficacious as a standard of care treatment (31, 32). Thus, 
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lymphodepleting regimens have a direct anti-tumor benefit against leukemic cells and the 

combination with CAR-T cell infusion can further clear target cells. Many chemotherapeutic 

compounds also have lymphodepleting effects. The combination of a lymphodepleting 

temozolomide regimen and ACT with Epidermal Growth Factor variant III (EGFRvIII)-directed 

CAR T cells in glioblastoma multiforme (GBM) mouse models demonstrated increased 

persistence of infused T cells and enhanced regression of tumors in the combination therapy 

compared to ACT with CAR T cells alone (33).  In addition, this work provided support for a 

clinical trial in patients with Grade IV Glioma (NCT02664363). Thus, it is an attractive strategy 

to augment the success of ACT in human malignancies by exploring the utilization of 

chemotherapy agents that simultaneously lymphodeplete patients to provide a supportive niche 

for infused T cells and induce the cytotoxicity of tumor cells.  

Preclinical mouse models have demonstrated that the infusion of gp100-specific pmel T 

cells in B16 tumor-bearing mice could significantly induce tumor regression, but only when 

ACT was combined with non-myeloablative TBI (Figure 2) (34). Moreover, the efficacy of ACT 

in combination with TBI was attributed to increased serum levels of IL-7 and IL-15 indicating 

that infused T cells take advantage of the availability of homeostatic cytokines to mount effective 

anti-tumor responses. In contrast to these results, IL-7 is not elevated in tumor-bearing BALB/C 

mice after lymphodepleting cyclophosphamide treatment (35). However, several studies in 

C57BL/6 mice have demonstrated the importance of IL-7 in a post-lymphodepletion setting, 

suggesting that the increase of homeostatic cytokines after lymphodepleting regimens could be 

model specific (34, 36-39). Importantly, several clinical trials investigating the combination of 

lymphodepletion regimens with ACT demonstrated increases of IL-7 and/or IL-15 post-

lymphodepletion and T cell infusion confirming the previous findings in murine models (26, 40-
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44). Elevated serum and plasma levels of IL-7 and IL-15 in response to a lymphodepleting 

regimen were first demonstrated by Dudley et. al. in melanoma patients receiving ACT with TIL 

(26). Recent studies demonstrated similar findings in synovial sarcoma patients treated with NY-

ESO-1-directed transgenic T cells, whereby increases of IL-7 and IL-15 were only observed in 

patients pre-conditioned with both cyclophosphamide and fludarabine compared to 

cyclophosphamide alone (43). Additionally, Ramachandran et. al. demonstrated that 

lymphodepleting regimens containing higher doses of fludarabine are necessary for enhanced in 

vivo T cell persistence and improved clinical response rates exhibited in this trial, suggesting that 

IL-7 and IL-15 are necessary for T cell support after infusion (43). Moreover, lymphoma 

remissions and the magnitude of anti-CD19 CAR T cell expansion have been associated with 

high serum abundance of IL-7, IL-15, and CCL-2 (40, 44). Therefore, the increased availability 

of cytokines such as IL-7 and IL-15 are critical for efficacious responses in patients undergoing 

ACT in combination with lymphodepleting regimens.   

The abundance of homeostatic cytokines and enhanced tumor regression rates has been 

associated with increased intensity lymphodepleting regimens when in combination with ACT 

(26, 43). Initial studies in mice indicated that an increased degree of lymphodepletion (i.e. 

myeloablation) with ACT in combination HSCT could enhance tumor regression (34, 45). B16 

tumor-bearing mice that received myeloablative or non-myeloablative TBI with HSCT in 

combination with ACT had an increased persistence of pmel T cells and an enhanced rate of 

tumor rejection compared to mice that did not receive HSCT (45). This suggested that not only 

could a higher intensity of lymphodepletion promote the efficacy of ACT, but that hematopoietic 

stem cells also work in conjunction with adoptively transferred T cells to eliminate tumors. 

Subsequent clinical studies by Rosenberg et. al. initially validated these findings reporting that 
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Figure 2. The increased availability of IL-7 and IL-15 induced by lymphodepletion promotes the efficacy of 

ACT. (A) The absolute leukocyte count (ALC) and the concentrations of IL-7 and IL-15 are inversely related. At 

the nadir of the ALC, T cells are adoptively transferred to take advantage of an increased pool of IL-7 and IL-15. (B) 

The induction of IL-7/IL-15 by lymphodepletion regimens are necessary to induce potent anti-tumor responses after 

adoptive T cell transfer. Each line is a representation of tumor growth over time in mice. Graph is adapted from (34). 

LD=lymphodepletion. 
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response rates were higher in melanoma patients that received ACT in combination with 

myeloablative therapy and HSCT compared to patients that received ACT with NMA 

chemotherapy alone (Overall response rate: 72% and 48% respectively) (26). These findings 

indicated that an increased intensity of lymphodepletion could promote anti-tumor immunity 

elicited by ACT with TILs in human melanoma patients. However, the same group later 

conducted a randomized clinical trial and reported contradictory findings in that response rates 

were not significantly different between patients that received ACT with TILs in combination 

with myeloablative chemotherapy and HSCT in comparison to patients that received ACT plus 

NMA chemotherapy without HSCT (27). The authors concluded that the contradiction of earlier 

findings could be attributed to patient selection and emphasized the importance of randomization 

for clinical trials. Overall, lymphodepletion is necessary to combine with ACT to achieve clinical 

efficacy, but the increased intensity of lymphodepleting regimens and subsequent HSCT may not 

have a clinical benefit to melanoma patients.  

The rationale for increased intensity lymphodepleting regimens for ACT is not 

unfounded. Many clinical trials have investigated various lymphodepleting regimens in 

combination with ACT for the treatment of solid tumors and hematologic malignancies (Table 

1). Compared to lymphodepleting regimens with cyclophosphamide alone, the administration of 

both cyclophosphamide and fludarabine has demonstrated the following: 1. Increased the 

abundance of serum IL-7 and IL-15 (43, 46), 2. Higher complete/partial clinical response rates in 

synovial sarcoma patients receiving NY-ESO-1-directed transgenic T cells (43), 3. Longer 

progression-free survival in lymphoma patients receiving anti-CD19 CAR T cells (46). Hence, 

the addition of fludarabine may be required to enhance the efficacy of ACT and future studies 

need to address what degree of lymphodepletion is necessary to achieve the best clinical 
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responses. Conversely, the benefit of myeloablative regimens in addition to HSCT and ACT 

regimens may be beneficial for specific indications. The survival rates of patients with acute 

lymphoblastic leukemia (ALL) treated with CD19-directed CAR T cells were significantly 

higher when these patients received lymphodepletion and consolidation HSCT compared to 

patients that received consolidation HSCT and CAR T cells without lymphodepletion (47, 48). 

Notably, patients that had a complete response to the CAR T cell therapy underwent 

consolidation HSCT because that is the standard of care treatment for pediatric ALL patients that 

are negative for minimal residual disease to minimize the probability of disease recurrence (48). 

Likewise, the infusion of WT1-specific T cells preceded by allogeneic HSCT in acute myeloid 

leukemia (AML) patients demonstrated a 100% relapse-free survival rate with a median duration 

of 44 months post-infusion of T cells (21). Hence, the combination of ACT with complete 

myeloablation and HSCT may provide a therapeutic benefit to cancer patients, but the efficacy is 

likely dependent on the disease, patient cohort, and treatment strategy.  

Ample evidence has been provided in support of combining lymphodepleting regimens 

with ACT. However, increased dosing of chemotherapy and myeloablation is consistent with 

regimen-associated toxicity, including exacerbated neutropenia, infection, anemia, thrombotic 

microangiopathy, thrombocytopenia, pancreatitis, neurotoxicity, cardiotoxicity, and death (5, 8, 

26, 27, 46, 49). Additionally, the exposure to cyclophosphamide has been associated with an 

increased risk of developing bladder cancer, non-melanoma skin cancer, and myeloid leukemia 

(50, 51). Moreover, the prior treatment of chemotherapy is associated with an increased risk of 

developing myelodysplastic syndrome (MDS) and AML as determined among a cohort of 

>700,000 patients with solid tumors consisting of 22 different malignancies (52). Despite that 

lymphodepleting regimens augment the efficacy of ACT, the usage of cytotoxic agents in 
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patients with solid tumors for this purpose is not without significant risks. Hence, regimen-

associated toxicities and risks should be strongly considered when investigating pre-conditioning 

regimens prior to ACT. Ultimately, the elimination of lymphodepleting regimens prior to ACT 

would be ideal to reduce treatment-associated morbidities and potentiate patient-treatment 

eligibility. Some clinical trials have observed tumor shrinkage and complete regressions after 

ACT without any pre-conditioning lymphodepletion (53-55). However, a universal solution that 

circumvents the utilization of cytotoxic lymphodepleting regimens to promote the activity of 

ACT, particularly in patients with solid tumors has yet to be implemented successfully in the 

clinic. 

Strategies to enhance the efficacy of ACT 

In contrast to TILs, genetic modifications are inherent to the production of CAR-T cells 

and TCR-transgenic T cells. Several groups have utilized innovative approaches to further 

modify T cells to enhance their in vivo persistence, resistance to exhaustion, and increase 

cytotoxic capabilities, which has been extensively reviewed in recent literature (60, 61). A list of 

strategies to enhance the efficacy of ACT focused on the enrichment, the expansion, the 

modification, and host-conditioning aspects are summarized here (see Figure 3; Table 2).  

The identification of target antigens and the enrichment of tumor-specific T cell clones 

is a critical aspect of promoting a robust anti-tumor response via ACT. However, recent findings 

have highlighted the scarcity of tumor-reactive T cells within tumors. Tumors are commonly 

infiltrated with T cells, known as bystander T cells that hold specificity for non-overlapping 

antigens, such as viral epitopes (including Epstein-Barr virus, human cytomegalovirus, and 

human influenza) (62).  Within the past three years, several studies have identified the presence  
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Table 1. Summary of clinical trials exploring various pre-conditioning regimens for ACT 

Disease 
ACT 

Strategy 

Lymphodepleting 

Regimen 

Additional 

Therapy 
Key Findings Reference 

Melanoma TIL 

Cy/Flu None 

• Enhanced survival with TBI 

combined with HSCT 

 

(26) 

 

Cy/Flu  

+ 200cGy TBI 
HSCT 

Cy/Flu  

+ 1200cGy TBI 
HSCT 

Melanoma  TIL 

Cy/Flu  None  • No survival difference 

observed with 
Cy/Flu+TBI+HSCT in 

randomized trial 

(27) 
Cy/Flu  

+ 1200cGy TBI 
HSCT 

Neuroblastoma 

GD2-directed  

EBV-CTLs  
or ATCs 

None None 

• Similar persistence of both 

EBV-CTLs and ATCs 

• Higher peak expansion of 

CAR EBV-CTLs 

• CRs and NED observed 

(54) 

Neuroblastoma 
GD2-directed  

ATCs 

None 
Anti-PD-1 

(pembrolizumab) 

• Elevated IL-15 and CAR-T 

persistence in cohorts 
receiving Cy/Flu 

(41) 

Cy/Flu 

Pancreatic 

Cancer 

Mesothelin  

CAR-T 

None 
None 

• Cy enhanced CAR-T 

expansion in vivo 
(56) 

Cy 

Multiple 

Myeloma 

NY-ESO-1  

TCR-transgenic  
T cells 

Prior HSCT Lenalidomide 

• Long-term persistence of T 

cells 

• CRs and NED observed 

(57) 

Synovial 
Sarcoma 

NY-ESO-1  

TCR-transgenic  

T cells 

Cyhigh/low/Flu 
None 

• Elevated IL-7 & IL-15 and 

T cell engraftment with 

Cy/Flu vs. Cy alone 

(43) 

Cy 

NHL CD19 CAR-T 

Cylow/Flu 

None 

• Elevated IL-7 and CCL-2  

• Cyhigh/Flu associated with 

increased CAR-T expansion 

& better clinical responses 

(40) 

Cyhigh/Flu 

NHL CD19 CAR-T 

Cy/Flu 
HSCT 

2° CAR-T 
• Enhanced CAR-T expansion 

& clinical responses with Flu 
(58) Cy/Etoposide 

Cy 

DLBCL CD19 CAR-T 

None 

None 

• Poor ORR without LD 

• ORR similar between Cy/Flu 

and bendamustine 

(59) Cy/Flu 

Bendamustine 

EBV+ HL/NHL EBV-CTLs None 2° EBV-CTLs 

• Long-term persistence of T 

cells 

• CRs and NED observed  

(55) 

EBV+ HL 
DN-TGFβRII  
EBV-CTLs 

None Various 

• Long-term persistence of T 

cells 

• CRs and NED observed 

(53) 

EBV+ 

nasopharyngeal 

carcinoma 

EBV CTLs Anti-CD45 mAbs None 

• 1 CR 

• Long-term persistence of T 

cells 

(42) 

B cell 

malignancies 

Donor CD19  

CAR-VSTs 
Prior HSCT 1°-3° CAR-T 

• Long-term persistence of T 

cells 

• CRs and NED observed 

(55) 

Abbreviations: TIL (tumor infiltrating lymphocytes); Cy/Flu (cyclophosphamide/fludarabine); cGy (centigrey); TBI 

(total body irradiation); HSCT (hematopoietic stem cell transplant); GD2 (disialoganglioside); EBV-CTLs (Epstein-

Barr virus cytotoxic T lymphocytes); ATCs (activated T cells); CR (complete response); NED (no evidence of 

disease); NHL (non-Hodgkin’s lymphoma); HL (Hodgkin’s lymphoma); 1°, 2°, 3° (primary, secondary, or tertiary T 

cell infusions); DLBCL (Diffuse Large B cell Lymphoma).  
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of both tumor-specific and bystander TILs in multiple cancer types (63-66). Transcriptomic and 

phenotypic analysis revealed that tumor-specific TILs have inherent exhaustion characteristics 

and phenotypes resembling tissue-resident memory T cells as defined by the expression of 

CD69, CD103, and CD39 in combination with exhaustion markers such as PD-1 and TIM-3 (62, 

64-66). These findings have provided direction into identifying tumor-specific T cells that may 

be exploited to generate clinical infusion products.  

Recently, the identification of both tumor neoantigens and cognate antigen-specific TILs 

in patients has provided exciting new routes of treatment for cancer patients on a highly 

personalized level and eliminates the possibility of outgrowing bystander TILs. Tran et. al. 

identified T cells specific for the oncogenic mutant protein, KRASG12D,  in a patient with 

colorectal cancer (3). Their approach to identify KRASG12D-specific TILs leveraged whole 

exome sequencing and RNA sequencing to identify nonsynonymous mutations within the 

patient’s tumor for the purpose of synthesizing peptides derived from mutant proteins (67). 

These peptides are then presented through autologous antigen presenting cells (APCs), which are 

co-cultured with the patient’s TILs. Through this approach, the APCs stimulate TILs that are 

specific for the library of synthesized peptides that can then be expanded for the purpose of 

ACT. The infusion of >1x1011 KRASG12D-specific TILs to the colorectal cancer patient led to 

complete regression of lung metastases, demonstrating that targeting a singular neoantigen with 

ACT can provide robust therapeutic responses in cancer patients. Recently, the same group 

reported that a heavily pretreated metastatic breast cancer patient exhibited a complete response 

after ACT with TILs specific for 4 mutant proteins - SLC3A2, KIAA0368, CADPS2 and CTSB 

(4). Notably, this patient’s complete response was associated with the detection and persistence 

of the infused TIL 17 months after cell transfer. This finding indicated that immunotherapy and 
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ACT could be effective in cancer patients even if the disease generally immunologically inert, as 

in the case of breast cancer (68). With this approach, Rosenberg et. al. have identified TILs 

specific for multiple neoantigens across several cancer types, some of which are commonly 

mutated in a variety of diseases, including mutant p53, the most commonly mutated gene in 

cancer (67, 69, 70). While targeting p53 with this approach is limited by the HLA restriction 

elements specific to each individual patient, there is potential for the synthesis of TCRs specific 

for common oncogenic and mutated tumor-suppressor proteins like KRAS and p53 that would 

act as an “off the shelf” ACT strategy. This highly personalized mode of therapy provides a 

powerful means to promote durable remissions to cancer patients.  

The demand of T cell expansion to generate clinical infusion products is contradictory to 

the nature of T cell biology. The precedent to infuse high amounts of TILs or CAR-T cells stems 

from experiences in clinical trials whereby patients that received higher number of T cells 

exhibited enhanced clinical response rates (71, 72). However, the continuous expansion of T 

cells skews in favor of effector T cell development (Teff) and the onset of T cell exhaustion that 

limits the capacity to persist long-term in vivo (73). While the infusion of high numbers of T 

cells are associated with better clinical responses, there is mounting evidence that the infusion of 

T cells that are dominantly memory T cells (Tmem) can also promote durable anti-tumor 

responses (58, 74-76). Notably, Tmem cells have a greater capacity to persist long term in vivo, 

but also give rise to Teff cells which can conduct cytotoxic responses with haste. Thus, a balance 

between expanding high numbers of T cells and maintaining an abundance of Tmem appears to be 

ideal for most settings of ACT. One strategy to augment the expansion of Tmem has been the 

addition of IL-7 and/or IL-15 with IL-2 in T cell growth media (77). IL-2 selectively promotes 

the differentiation of Teff cells at the expense of Tmem. In contrast, IL-7 and IL-15 are involved in 
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the maintenance of Tmem. Thus, an optimal stimulus may be achieved by utilizing a balance of 

cytokine signals that regulate Tmem and prevention excessive Teff differentiation. Other strategies 

to enhance memory characteristics of T cells are highlighted in Figure 3. 

A critical limiting factor for ACT is the presence of exhausted T cells (Tex) which have a 

finite ability to proliferate and are susceptible to apoptosis upon persistent TCR stimulation. 

Single-cell RNA sequencing studies have revealed a remarkable complexity and heterogeneity 

among Tex cells in tumors, whereby subsets of Tex cells maintain stem and resident memory 

characteristics that can differentiate to more proliferative T cells bearing an increased cytotoxic 

capacity (64, 65, 78). Despite that Tex have an ability to persist within tumors, increasing 

evidence has suggested irreversible exhaustion can be the fate and potentially the demise of 

tumor-reactive T cells. Specifically, the transcription factor Thymocyte selection-associated high 

mobility group box protein (TOX) appears to be a master regulator of T cell exhaustion (79, 80). 

Hence, it is imperative that protocols to generate T cell infusion products take on approaches that 

minimize the onset of exhaustion during expansion. 

The genetic modification of T cells has allowed researchers to exploit the deficiencies of 

ACT. The improvement of technology and protocols designed to genetically engineer T cells has 

led investigators to modify TILs for the purpose of ACT (81). In contrast to CAR T cells or 

TCR-transgenic T cells, the genetic modification designed to force antigen specificity is not 

required in TILs. Instead, investigators have focused on augmenting the cytotoxic potential of 

TILs via elimination of Programmed Death-1 (PD-1) (81) or inducible expression of IL-12 (82) 

by genetic engineering strategies. However, much like the single dose administration of 

recombinant IL-12 to patients (83), toxicity related to TIL IL-12 expression was deemed unsafe 

(82). Hence, the careful consideration of potential side effects is necessary when exploring 
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strategies involved with the modification of T cells. Other efforts to genetically modify TIL 

include the forced expression of CXCR2 to enhance TIL trafficking to tumor beds after infusion 

(84).   

While the genetic modification of TILs is still within the immature stages of clinical 

development, several innovative approaches have been explored to enhance the activity of T 

cells for other modalities of ACT. Specifically, the “armoring” of T cells to produce cytokines or 

express co-stimulatory ligands engages adoptively transferred cells to enhance the anti-tumor 

response of local tumor-associated immune cells. For instance, the expression of IL-12 or 

CD40L by CAR-T cells can stimulate the maturation of DCs and potentiate the reprogramming 

of the tumor microenvironment resulting in the elimination and/or control of tumor growth (85-

87). Other approaches have focused on specifically enhancing the in vivo expansion capacity of 

T cells. The engineering of synthetic mutant pairs of the IL-2R and its cognate ligand, IL-2, 

allows the selective expansion of the modified T cells with negligible toxicity (88). While CARs 

and transgenic TCRs have already demonstrated that genetically modified T cells engineered to 

target a specific-antigen is safe and efficacious, multiple clinical trials have been conducted that 

have further modified T cells including the knockout of PD-1 or the expression a dominant-

negative form of TGF-βRII to overcome tumor-mediated immunosuppression (53, 89). Together, 

the advanced technology involved in the genetic modification endows the potential to generate 

sophisticated T cells that can simultaneously overcome multiple barriers that limit the efficacy of 

ACT. 

The coordination between adoptively transferred T cells and endogenous immune cells is 

vital to completely eradicate tumors, particularly in metastatic cancer patients. In the setting of 

ACT, the role of endogenous immune cells can be exploited by host-conditioning. As discussed 
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earlier in this chapter, the conditioning of hosts with lymphodepleting regimens is indispensable 

to observe durable clinical benefit in cancer patients. Previous efforts to mitigate 

immunosuppression in ACT regimens have included combinations with checkpoint blockade 

therapy (8, 71). However, these therapies inhibit T cell intrinsic suppressive mechanisms and the 

inhibition of immunosuppressive myeloid cells in combination with ACT has not been explored 

in clinical trials. The curtailment of myeloid-mediated immunosuppression after the adoptive 

transfer of T cells is a critical element in the promotion of tumor cytotoxicity that will be 

discussed later in Chapter 3. 

Many other forms of host-conditioning have been explored in both pre-clinical models 

and in clinical trials. Most commonly, the administration of recombinant IL-2 immediately 

following the infusion of T cells has been consistently used in melanoma patients that receive 

autologous TILs (2, 6, 49). Similarly, the administration of IL-7, IL-15, and IL-1β have been 

shown to enhance the efficacy of ACT and promote the persistence of infused T cells in pre-

clinical models (35, 37, 90). However, the administrations of these cytokines have been deemed 

unsafe due to toxicity or have yet to reach clinical trials. Other approaches to facilitate the 

expansion of adoptively transferred T cells in vivo include the electroporation of T cells with 

mRNA encoding IL-12 or 41BBL (91). In this study, tumor-specific T cells were electroporated 

with mRNA and infused intravenously or directly into tumor lesions. Remarkably, the direct 

injection of T cells into tumors led to the regression of distal untreated tumors indicating that the 

electroporated T cells could induce a systemic immune response. A similar approach 

implementing the intratumoral administration of IL-23, IL-36γ, and OX40L mRNA encapsulated 

within lipid nanoparticles has demonstrated potent systemic anti-tumor immune responses (92). 

The combination of tumor-immune reprogramming via mRNA therapy with ACT has not yet 
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been explored in clinical trials. However, this innovative approach effectively induces a systemic 

immune response against distal, untreated lesions. Thus, mRNA therapy is an attractive strategy 

that could condition the host during the course of ACT to enhance anti-tumor T cell responses. 

Collectively, a comprehensive approach addressing multiple components and deficiencies of 

ACT will most likely have the most success in boosting clinical response rates.  

 
Figure 3. Strategies to Enhance ACT.  

The “Enrichment” of tumor-specific T cell clones reduces the likelihood of a dilution effect by irrelevant T cell 

clones or competition for nutrients and cytokines that are necessary for the expansion of T cells. The “Modification” 

of T cells can be utilized to boost the anti-tumor functionality of T cells upon adoptive transfer. The “Expansion” of 

T cells is a critical aspect of ACT because high numbers of T cells are needed for infusion to elicit durable responses 

in cancer patients. “Host-conditioning” is a necessary aspect of ACT that facilitates the engraftment, long-term 

persistence of infused T cells, and regression of multiple tumor lesions.  
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Table 2. List of references for Figure 3 

Category Rationale for Strategies to Enhance ACT Reference(s) 

Enrichment 

CD39 and CD103 identify bystander vs. tumor-specific T cells (62, 65) 

41BB and PD-1 positivity identifies tumor-reactive T cells (93) 

Tumor-specific T cells are enriched within a population of TRM 

cells  

(62, 65, 66) 

Adoptive transfer of neoantigen-specific T cells elicits durable 

complete responses in multiple malignancies 

(3, 4) 

Expansion of endogenous T cells specific for cancer testis 

antigens and melanocyte related antigens 

(25, 94) 

Checkpoint blockade increases T cell infiltration within tumors (95) 

41BB agonists expand tumor-specific T cells (96) 

CD40 agonists expand tumor-specific T cells (97) 

Modification 

T cells engineered to express IL-2, IL-7, IL-12, IL-15 (82, 87, 98) 

Engineering of orthogonal IL-2/IL-2Rβ complexes allows for 

the selective potentiation of adoptively transferred T cells  

(88) 

The knockout of checkpoints increases T cell function (89) 

Tumors express an abundance of chemokines to attract various 

immune cells to tumor beds 

(99, 100) 

Expansion 

GREX flasks and WAVE bioreactors enhance the in vitro 

expansion of T cells 

(101, 102) 

41BB agonists enhance the ex vivo expansion of TILs from 

melanoma tumors  

(96, 103) 

Activation of Wnt signaling enhances the generation of TSCM 

cells 

(104) 

Inhibition of Akt enhances the expansion of memory T cells (105) 

TET2 disruption by insertional mutagenesis potentiates the 

expansion of CD19-directed CAR-T cells in vivo  

(75) 

In vitro expansion of T cells with cytokine cocktails containing 

 IL-2/IL-7/IL-15/IL-21 promote the expansion of memory T 

cells 

(106, 107) 

Hypoxia promotes the expansion of effector T cells (108) 

High concentrations of potassium (K+) within tumors promotes 

T cell stemness 

(109) 

Acidic pH of the tumor microenvironment restricts T cell 

function 

(110) 

Host-conditioning 

Lymphodepletion promotes the availability of homeostatic 

cytokines 

(34) 

MDSCs, TAMs, and Tregs suppress the activity of cytotoxic T 

cells 

(111) 

The combination of checkpoint blockade with ACT elicits 

durable responses in patients with solid tumors  

(8, 41) 

The infusion of IL-2, IL-7, IL-15, or IL-1β promotes the 

expansion and persistence of infused T cells 

(35, 37, 90, 

112) 

Electroporation of OX40L, 41BBL, or IL-12 mRNA into T 

cells promotes anti-tumor immunity upon adoptive transfer 

(91, 92) 
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CHAPTER TWO 

INTRATUMORAL ACTIVATION OF 41BB CO-STIMULATORY SIGNALS 

ENHANCES CD8 T CELL EXPANSION AND MODULATES TUMOR INFILTRATING 

MYELOID CELLS 

A note to the reader: the majority of this chapter has been accepted for publication in a 

research article in The Journal of Immunology, Innamarato et. al., 2020. 

 

Introduction 

 

The blockade of inhibitory signals enhances anti-tumor T cell functions 

It is well understood that despite the presence of T cells with tumor-cytotoxic potential in 

cancer patients, tumors progress and evade immune-mediated destruction. Despite that cancer 

promotes immune dysfunction, vaccine strategies have been utilized to promote the expansion of 

tumor-specific T cells, demonstrating that the immune system can be primed to recognize and 

eliminate tumors (113, 114). However, previous clinical trials have failed to during development 

due to the lack of clinical benefit (115, 116). Despite that the therapeutic efficacy of cancer 

vaccines could not be achieved on a sufficient scale to warrant its widespread use in the clinic, 

findings in these studies have catalyzed new strategies to leverage the immune system to combat 

cancer. 

In recent years, immunotherapy in cancer has burgeoned due to the development and 

clinical implementation of therapeutics that alleviate tumor-mediated immunosuppression on T 
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cells. Tumors exploit immune checkpoints including Programmed Death 1 (PD-1) and Cytotoxic 

T-Lymphocyte Associated Protein 4 (CTLA-4) to deactivate T cells, leading to immune evasion. 

PD-1 and CTLA-4 are co-inhibitory cell surface receptors expressed by T cells that reduce T cell 

activation, induce anergy, and promote cell death when activated by their cognate ligands (117). 

In addition, the expression of Programmed Death Ligand 1 (PD-L1) is one of the primary 

mechanisms by which tumor cells evade and actively suppress cytotoxic T cells (118). 

Conversely, the blockade of PD-1 or its cognate ligand PD-L1 has been proven to reinvigorate 

cytotoxic T cells and promote immune clearance of tumors (119). Notably, antibodies that block 

PD-1 or CTLA-4 have had remarkable clinical success providing complete responses in variety 

of cancer patients (120). While complete responses in metastatic cancer patients has been widely 

observed upon treatment with antibodies that target immune checkpoints, the majority of patients 

fail to respond to these therapies which has led to the development strategies that combine anti-

PD-1/PD-L1 or anti-CTLA-4 therapies with standard of care chemo-radiotherapy, small 

molecule inhibitors, and novel immune-based therapies (121, 122). In addition, the combination 

of immune checkpoint inhibitors with ACT with TIL has demonstrated clinical efficacy in 

metastatic melanoma patients, indicating that the relief of immune suppression of adoptively 

transferred T cells could improve clinical responses rates or enhance patient adherence 

throughout treatment on the clinical trial (8, 71).  

Triggering co-stimulation through 41BB revives tumor-cytotoxic T cells 

The state of exhaustion and dysfunction of T cells in tumors is due in part to the lack of 

co-stimulatory signals that can perpetuate the elimination of tumor cells. During naïve T cell 

priming, antigen-presenting cells (APCs) provide primary antigen-specific signals via membrane 

histocompatibility complex (MHC) proteins and secondary signals that stimulate co-stimulatory 
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receptors on T cells (123). Co-stimulatory molecules, CD80 and CD86, are expressed on APCs 

and engage the T cell co-stimulatory receptor, CD28, allowing efficient T cell priming and 

activation (124). The stimulation of activation signals in T cells can promote cytotoxic responses 

against tumor cells (125). In fact, the stratification of T cell subsets based on the expression of 

co-stimulatory molecules can indicate tumor-cytotoxic potential. In particular, the co-expression 

of the co-stimulatory receptor, 41BB, and PD-1 can identify a subset of cytotoxic TILs (93). In 

addition, upregulation of 41BB in TILs is consistent with the activation stimuli provided by 

autologous tumor (3). Hence, co-stimulatory molecules such as 41BB play a critical role in the 

identification and function of TILs.  

The stimulation of 41BB has been widely explored in the purpose of potentiating T cell 

responses in tumors. Activating 4-1BB with monoclonal antibodies promotes IFN-γ production, 

proliferation, and tumor regression in pre-clinical mouse models (126). Unfortunately, the robust 

anti-tumor immune responses exhibited in mice have not been replicated in clinical trials due to 

toxicity observed at efficacious doses of 41BB agonistic antibodies (α41BB) (127). Thus, newly 

developed therapeutics targeting 41BB have focused on selectively activating 41BB within 

tumor beds. This is in contrast to agonists that promote the systemic activation of 41BB and 

result in liver toxicity and other “on-target” co-morbidities (128). However, triggering co-

stimulatory via 41BB is an effective strategy to promote T cell expansion in vitro. The use of 

α41BB is effective in enhancing the expansion of function of TILs in vitro for the purpose of 

treating melanoma patients with ACT (96). Intriguingly, the culture of tumors in media 

containing IL-2 alone may fail to result in the successful expansion of TILs. However, the 

stimulation of the same tumor with IL-2 and α41BB induces the expansion and enhances the 

cytotoxic potential of TILs. This suggests that co-stimulatory signals are often necessary to 
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expand TILs from tumors in culture (96, 129). Despite the hurdles of translating therapeutics that 

activate 41BB, it is clear that triggering 41BB can strongly potentiate anti-tumor immune 

responses.  

An overview 41BB-41BBL activity on myeloid cells 

41BB is widely known as a co-stimulatory molecule expressed by T cells, however 

nearly all subsets of immune cells express 41BB (130). Previous studies have identified that 

41BB and 41BB ligand (41BBL) play critical, yet context-dependent roles in myeloid cell 

development and function (131, 132). In particular, the knockout of 41BB promotes the 

accumulation of myeloid cells under steady-state conditions, while triggering 41BB activation in 

dendritic cells (DCs) enhanced their capacity to stimulate T cell in vitro (131, 133). While 

accumulating evidence in mice has suggested that both 41BB and 41BBL are critical for directly 

regulating the function of myeloid cells, little is known about how this receptor-ligand axis 

potentiates myeloid-mediated anti-tumor immune responses in humans. Given that the 

importance of the inflammatory context in 41BB-41BBL signaling, a deeper understanding of 

41BB-41BBL signaling in human myeloid cells, particularly in the context of tumor-mediated 

inflammation, is needed (131, 134).  

In human biological systems, 41BBL acts as a maturation factor for monocytes, 

promoting the expression of co-stimulatory molecules and cytokines, including IL-12, IL-6, IL-

8, TNF, and M-CSF (135). The stimulation of 41BBL with 41BB protein induces reverse 

signaling in monocytes, triggering their maturation to DCs (136). Although 41BB-41BBL 

bidirectional signaling between T cells and APCs has been shown to promote effector immune 

responses, it remains unclear how the context of inflammation within human tumors influence 

this process. At our institution, treatment of melanoma patients using ACT with TIL has resulted 
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in a 38% overall response rate (6, 8). Moreover, 41BB agonists are currently being explored for 

the ability to enhance TIL expansion for the use ACT (NCT02652455). The work outlined in this 

chapter highlights the importance of triggering co-stimulatory signals on T cells and how 

augmenting the interactions of 41BB-41BBL bidirectional signals provided by antigen 

presenting cells (APCs) ultimately provides support for the improvement of TIL expansion from 

primary tumor fragments and the promotion of anti-tumor immune responses in vivo. 

Results 

Intratumoral 41BB activation leads to tumor regression in multiple models 

To determine the efficacy of 41BB agonists, we validated that systemic treatment via 

intraperitoneal (i.p.) administration led to tumor growth delay and complete regressions in mice 

with established MC38 tumors (Figure 4A, C). We observed that intratumoral (i.t.) 

administration with anti-41BB (α41BB) antibodies exhibited comparable efficacy to the i.p. 

route of administration by which the tumor growth kinetics and the frequency of complete 

regressions were similar (Figure 4B, D). We validated these results in two additional tumor 

models bearing the model ovalbumin antigen, Panc02-ZsGOVA (Figure 4E, G) and B16-OVA 

(Figure 4F, H). Intratumoral treatment of α41BB led to significant growth delay and tumor 

regression in mice with Panc02-ZsGOVA tumors (Figure 4E) and B16-OVA tumors (Figure 4F) 

compared to control mice that received i.t. isotype antibodies. Moreover, the survival of mice 

treated with i.t. α41BB was significantly enhanced in both models (Figure 4G-H). In mice with 

MC38 tumors, i.t. α41BB led to complete regressions in approximately 30% of treated mice 

(Figure 4D). Likewise, 70% of mice with Panc02-ZsGOVA tumors (Figure 4G) or B16-OVA 

tumors (Figure 4H) had no evidence of tumor growth after tumor inoculation (44 days and 70 

days, respectively). This suggested that presence of a highly immunogenic antigen, such as 
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OVA, could potently direct local anti-tumor immune responses after i.t. treatment with α41BB. 

Together, these data demonstrate that the intratumoral treatment with 41BB agonistic antibodies 

is a feasible approach to induce tumor regression in mice. 

 
Figure 4. Intratumoral treatment with agonistic 41BB antibodies promotes tumor regression in multiple 

mouse tumor models. (A and C) Mice with MC38 tumors were treated with anti-41BB via intraperitoneal 

administration. (A) Tumor growth summary. (C) Tumor growth in individual mice. (B and D) Mice with MC38 

tumors were treated with anti-41BB antibodies via intratumoral administration. (B) Tumor growth summary. (D) 

Tumor growth in individual mice. (E) Panc02-ZsGOVA tumor growth in mice that received intratumoral treatment 

with isotype or anti-41BB antibodies. (F) B16-OVA tumor growth in mice that received intratumoral treatment with 

isotype or anti-41BB antibodies. (G-H) Survival curves of mice from E and F. One of two representative 

experiments are shown. 
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Intratumoral treatment with a 41BB agonist increases CD8 T cell infiltration 

We determined that within one week after the initial treatment with i.t. α41BB, the size of 

tumors was significantly reduced in mice with MC38 tumors (Figure 5A) and Panc02-ZsGOVA 

tumors (Figure 5B). The reduction in tumor size in response to i.t. α41BB treatment was 

associated with an increase of CD8 T cell infiltration in both tumor models compared to mice 

treated with isotype antibodies (Figure 5C-D). However, the frequency of CD4 TILs was 

unchanged between mice treated with isotype or α41BB (Figure 5C-D). We next determined that 

the increase of CD8 T cells in MC38 tumors was required for the anti-tumor efficacy because the 

depletion of CD8 T cells prior to the start of i.t. α41BB treatment abrogated the reduction of 

tumor growth (Figure 5E). In contrast, the depletion of CD8 T cells had no effect in mice that 

received i.t. treatment with isotype antibodies indicating that basal anti-tumor CD8 T cell 

responses are ineffective against MC38 tumors (Figure 5E). Not only was the presence of CD8 T 

cells necessary for the reduction of tumor growth, we found that TILs isolated from α41BB 

treated tumors exhibited higher IFN-γ production in response to CD3 stimulation or co-culture 

with irradiated MC38 tumor cells (Figure 5F). Conversely, TILs from isotype treated tumors 

were successfully stimulated with CD3 antibodies but failed to produce IFN-γ in cultures with 

MC38 tumor cells (Figure 5F). These results demonstrate that i.t. 41BB agonism can rejuvenate 

CD8 T cell responses leading to an improvement of anti-tumor immune responses.   

 

Intratumoral 41BB activation remodels the tumor immune microenvironment 

We demonstrated that the triggering of 41BB co-stimulation via i.t. treatment with 

α41BB converted tumors to a more T cell inflamed environment (Figure 5). Indeed, the ratio of  
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CD11b+ myeloid cells relative to CD8+ T cells was significantly reduced in tumors that received 

α41BB treatment compared to mice that received control isotype antibodies (Figure 6A). In 

contrast to control tumors whereby the majority of CD45+ leukocytes were 

CD11b+MHCII+F480-CD11c- myeloid cells and CD11b+F480+Ly6C- tumor-associated 

macrophages (TAMs), we found that MC38 tumors treated with i.t. α41BB had a dramatic 

reduction in these myeloid cell populations (Figure 6B). Likewise, α41BB treatment decreased 

the frequency of CD11b+MHCII+F480-CD11c+ cells (DCs). In isotype-treated tumors, 

CD11b+F480- Ly6C+Ly6G- monocytes and CD11b+F480-Ly6C+Ly6G+ polymorphonuclear cells 

(PMNs), presumably monocytic- and PMN- myeloid derived suppressor cells (MDSCs), 

comprised <10% of CD45+ cells. Conversely, the reduction of TAMs and other myeloid cell 

populations coincided with significant increases of monocytes and PMNs in tumors that received 

treatment with α41BB (Figure 6B). Nevertheless, the changes in myeloid cell frequency in 

response to α41BB treatment were associated with an increased abundance of CD80+CD86+ 

DCs, TAMs, and monocytes (Figure 6C). Furthermore, DCs, TAMs, monocytes, and PMNs 

significantly upregulated CD80 and/or CD86 in tumors treated with α41BB compared to isotype 

controls (Figure 6D-G). Despite the loss of classical APCs within the tumor microenvironment, 

the increase in CD80 and CD86 among all tumor-associated myeloid cells may support anti-

tumor T cell responses after intratumoral administration of 41BB agonists.  

  

Intratumoral α41BB alters the immune stimulatory capacity of myeloid cells  

We further evaluated changes to intratumoral myeloid cells by examining the production 

of cytokines after i.t. α41BB. We harvested tumors from isotype and α41BB treated mice 7 days 

after treatment initiation and cultured the cells overnight. We found that myeloid cells from 

tumors produced IL-6 and TNF-alpha, but no difference was observed between cells from 
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Figure 5. Intratumoral treatment with agonistic 41BB antibodies increases CD8 T cell infiltration. (A-B) Mass 

of MC38 and Panc02-ZsGOVA tumors harvested 7 days after initial anti-41BB treatment. (C-D) Frequency of CD4 

and CD8 TILs in MC38 and Panc02-ZsGOVA tumors 7 days after initial anti-41BB treatment. (E) Mice with MC38 

tumors were treated with isotype or anti-41BB antibodies in combination with CD8 depleting antibodies. Tumor 

growth is shown (n=5 mice per group). (F) TILs were isolated from MC38 tumors treated with intratumoral isotype 

or anti-41BB antibodies. TILs were cultured with immobilized anti-CD3 antibody or co-cultured with irradiated 

MC38 or B16 tumor lines for 48hrs. IFN-γ was measured from supernatants. One of two representative experiments 

are shown. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 6. Remodeling of the immune microenvironment after intratumoral administration of anti-41BB 

antibodies. (A) Ratio of myeloid cells relative to CD8+ TILs in MC38 tumors after antibody treatment. (B) 

Percentage of myeloid cell subsets in MC38 tumors. Tumors were harvested 7 days after initial antibody treatment. 

(n=5 mice/group). (C) Percentage of CD80 and CD86 double positive myeloid subsets is increased after anti-41BB 

treatment. (D and F) Representative histograms for CD80 (D) and CD86 (F) gated on indicated myeloid cell subset. 

Gray=FMO, Black=Isotype, Red= anti-41BB. (E and G) Fold change in CD80 (E) and CD86 (G) expression in 

myeloid cell subsets from MC38 tumors. (n= 9-10 mice/group). E, G, Data is a summation of two independent 

experiments. A-C, One of two independent experiments are shown. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
 

α41BB or isotype tumors (Figure 7A, D). In contrast, DCs and TAMs had an elevated expression 

of IL-10, while CD11b+Gr-1+ cells exhibited a reduced production of IL-10 (Figure 7B). 

Similarly, DCs and TAMs exhibited an increased production of IL-12 (Figure 7C). While we 

observed changes in cytokine expression among myeloid cell subsets, the frequency of DCs and 
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TAMs were significantly reduced by α41BB treatment (Figure 7B). Consistent with these data, 

the number of cytokine-producing DCs and TAMs were largely reduced in cultured tumor cell 

digests of α41BB treated tumors in comparison to isotype treated tumors (Figure 7E-H). 

Concordantly, the number of cytokine-producing monocytes and PMNs (CD11b+Gr-1+ cells) 

were significantly elevated in α41BB treated tumors (Figure 7E-H). Because IL-10 and IL-12 are 

key regulators in T cell priming and activation by myeloid cells, we next evaluated the capacity 

of intratumoral myeloid cells to stimulate T cells after treatment. We found that OT-I T cells 

produced more IFN-γ in co-cultures with myeloid cells from α41BB treated tumors both with 

and without in vitro IL-10 neutralization (Figure 7J). Upon examination of the phenotype of OT-

I T cells after co-culture, we observed that T cells co-cultured with myeloid cells from α41BB-

treated tumors had an elevated expression of cell surface 41BB compared to T cells cultured with 

myeloid cells from isotype-treated tumors (Figure 7K-M). Moreover, the in vitro neutralization 

of IL-10, but not IL-12, enhanced the expression of 41BB in OT-I T cells from co-cultures with 

tumor myeloid cells, suggesting that myeloid cell derived IL-10 restricted the expression of 

41BB (Figure 7K-M). Similar to the increase of 41BB expression, IL-10 neutralization resulted 

in an increased expression of PD-1 in co-cultures with myeloid cells from isotype tumors (Figure 

8A-C). Thus, i.t. α41BB treatment enhances the ability of tumor-myeloid cells to potentiate T 

cell responses. 

41BB agonistic antibodies promote ex vivo human TIL expansion  

We have previously shown that the addition of 41BB agonistic antibodies enhances the 

expansion and function of melanoma TILs from primary tumor fragments in vitro (96). We 

obtained two melanoma specimens and attempted to expand TILs from tumor fragments placed 

in media containing IL-2 or IL-2 in combination with 41BB. In Patient 1, TILs expanded in  
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Figure 7. Intratumoral anti-41BB treatment alters myeloid immunostimulatory capacity. (A-D) Intracellular 

cytokine staining from myeloid cells from MC38 tumors treated with isotype or anti-41BB antibodies. (A) IL-6, (B) 

IL-10, (C) IL-12, (D) TNF-alpha. (n=7-10 mice/group). (E-H) The number of cytokine producing cells were 

determined by back-calculating the percentage of myeloid cell subsets relative to the total number of cells from each 

mouse tumor. (I) Experimental design for (J-M). (J-M) CD8+OT-I T cells after 72hrs with peptide stimulation with 

or without culture with myeloid cells from isotype or anti-41BB treated tumors. (J) IFN-γ was measured in 

supernatants from OT-I : myeloid cell co-cultures incubated with or without IL-10 neutralizing antibodies. (K-L) 

41BB expression in OT-I T cells after 72hrs of co-culture with or without IL-10 or IL-12 neutralizing antibodies. 

Percentage of 41BB positive OT-I T cells (K) and expression level (L). (M) Representative histogram of 41BB 

expression. Each data point represents of pool of CD11b+ cells collected from 3-4 individual mouse tumors. (n=13-

16 individual mice/group). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 8. Tumor-associated myeloid cells alter PD-1 expression on T cells. (A) Representative dot plot for PD-1 

expression. (B) PD-1 expression by OT-I T cells in myeloid cell co-cultures. (C) Representative histogram 

illustrating PD-1 expression after co-culture. Ratio of CD11b : OT-I indicated on the left. PD-1 MFI indicated on the 

right. OT-I T cells with Isotype myeloid cells in black; with anti-41BB myeloid cells in red. 

 

cultures with IL-2+41BB (5/6 fragments), while no expansion occurred in cultures with IL-2 

only (0/6 fragments) (Figure 9A). Similarly, an enhancement of TIL expansion was observed in  

Patient 2 among fragments grown with IL-2 and 41BB (23/24 fragments) compared to TILs 

grown in IL-2 alone (12/24 fragments). Moreover, the number of TIL expanded per fragment 

was greater in cultures containing IL-2 and 41BB compared to IL-2 alone conditions 

(Figure9B). Among fragments grown in IL-2 only, the distribution of CD4+ TILs and CD8+ TILs 

were approximately equal. In contrast, the combination of IL-2+41BB almost exclusively 

promoted the expansion of CD8+ TILs (Figure 9C). Because the yield of TILs from IL-2 alone 

cultures was relatively low, we pooled together TILs from fragments that exhibited the best 

expansion at the end of the culture. Similarly, we chose TILs expanded from 6 individual 

fragments grown in IL-2+41BB that yielded the highest number of cells. We then co-cultured 

the selected TILs with autologous tumor digest and determined the magnitude of IFN-γ 

production. IFN-γ was detected and effectively blocked with MHC-I blocking antibodies in TILs 

grown in IL-2 alone and in 3/6 selected TILs grown in IL-2 and 41BB (Figure 9D). Notably, 
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the abundance of IFN-γ was higher in co-cultures with TILs expanded with IL-2 and 41BB 

compared to TILs grown in IL-2 only (Figure 9D). 

To better understand the contribution of myeloid cells in the process of ex vivo TIL 

expansion, we evaluated the frequency of leukocyte populations in a fresh tumor sample from 

melanoma Patient 1. We found that 17.1% of all live cells were CD45+, which 73% of CD45+ 

cells consisted of CD11b+CD11c+CD14+HLA-DR+ myeloid cells. Approximately 15% of CD45+ 

cells were CD4+ and CD8+ T cells and the remainder consisted of a variety of myeloid cell 

subsets (Figure 9E). We next evaluated the production of cytokines in fresh tumor digests from 

Patient 1 and Patient 2. Fresh tumor cell digests were cultured overnight in IL-2 alone or in 

combination with 41BB. Tumors produced vast amounts of CCL2, IL-6, IL-8, IL-1β, IL-10, 

and TGF-β. In response to IL-2 and IL-2 in combination with 41BB, we detected an increased 

production of CXCL10 and IFN-γ in comparison to unstimulated tumor digests (Figure 9F-G). 

Moreover, a trend consistent with an increase of CXCL10 and IFN-γ were observed when 

tumors were cultured with IL-2 and 41BB compared to IL-2 alone (Figure 9H). Collectively, 

these data demonstrate that the augmentation of ex vivo TIL expansion via IL-2 and 41BB 

stimulation is associated with increases in proinflammatory cytokine production.   

 

Stimulation of the 41BB-41BBL axis alters myeloid cell phenotype and function 

Next, we dissected how myeloid cells facilitate ex vivo TIL expansion via 41BB 

stimulation. First, we observed that CD11b+ myeloid cells within a fresh melanoma tumor lacked 

the expression of 41BB (Figure 10A). Next, we phenotyped peripheral blood myeloid cells and 

found that CD11b+ cells in PBMCs expressed HLA-DR/DP/DQ, CD14, CD86, CD11c, and low 

levels of PD-L1 and CD141 (Figure 10B). Moreover, these cells lacked expression of 41BB, but  
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Figure 9. 41BB agonism enhances the growth of TILs from primary human melanomas. (A-B) Melanoma 

tumor fragments were grown in media containing IL-2 or IL-2 in combination with α41BB. Patient 1 (A) and Patient 

2 (B). The number of fragments to successfully grow TILs are indicated above each plot. (C) Frequency of CD4 and 

CD8 TILs expanded from tumor fragments from Patient 2. (D) TILs from Patient 2 were co-cultured with 

autologous tumor digests with or with MHC-I blocking antibodies for 24hrs. IFN-γ was measured in supernatants. 

(E) Tumor digest from Patient 1 was analyzed for immune infiltrates. Outer ring represents the frequency of CD45+ 

cells among the total live cells. Inner pie chart represents the proportions of immune cell subsets. Cell subset 

frequency is indicated on pie chart and adjacent to the indicated cell subset on the right. (F-H) Cytokines in the 

supernatants of fresh tumor digests from Patient 1 (F) and Patient 2 (G) were cultured at 1x106 cells/mL in indicated 

media overnight. 
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did express 41BBL (Figure 10B-C). Since the activation of 41BBL in monocytes is known to 

promote the maturation to DCs (138, 139), and 41BB expression was poorly expressed by 

myeloid cells, we examined how the stimulation of 41BBL could differ in activating myeloid 

cells in comparison to a 41BB agonistic antibody. We stimulated myeloid cells with immobilized 

41BB to agonize 41BB or immobilized 41BB protein (41BB-Fc) to agonize 41BBL. The 

viability of donor myeloid cells was greatly reduced in unstimulated cultures or under 

stimulation with 41BB alone. In contrast, stimulation with 41BB-Fc alone maintained cell 

viability similar to that of cultures containing GMCSF (positive control) or GMCSF in 

combination with 41BB or 41BB-Fc (Figure 10D). This suggested that activation of 41BBL, 

but not 41BB, was sufficient to maintain the survival of myeloid cells and that 41BB(L) signals 

did not augment cell viability in the presence of GMCSF. Compared to pre-cultured cells, 

myeloid cells upregulated 41BBL expression, but not 41BB expression, when incubated with a 

GMCSF maturation stimuli (Figure 10E). In addition to maintaining myeloid cell viability, the 

stimulation with 41BB-Fc reduced the expression of CD14, while enhancing the expression of 

PD-L1, CD141, 41BBL, and CD86 compared to pre-culture myeloid cells (Figure 10F). 

Likewise, GMCSF-stimulated cells exhibited similar phenotypic changes to 41BB-Fc treated 

cells, however, GMCSF failed to upregulate CD86 (Figure 10G). The increase in CD86 

expression was highly consistent between all donors (Figure 10H). In contrast to 41BB-Fc or 

GMCSF stimulation, 41BB alone failed to maintain myeloid viability (Figure 10D) and the 

phenotype was similar to myeloid cells cultured in media alone (Figure 10F-G). Likewise, the 

addition of 41BB or 41BB-Fc failed to augment cell surface marker expression when combined 

with GMCSF (Figure 10G). While increases in CD86 and 41BBL expression are indicative of an 

enhanced co-stimulatory capacity, we further interrogated the impact of 41BB-41BBL activation  
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Figure 10. Activation of 41BB and 41BBL alter myeloid cell phenotype and function. (A) 41BB expression in 

myeloid cells from a fresh melanoma sample. (B) Phenotype of CD11b+ cells from healthy donor PBMCs. (C) 

Representative dot plots for 41BBL and 41BB expression on CD11b+ cells from PBMCs (left) or tumor myeloid 

cells (right). (D) Viability of sorted healthy donor myeloid cells were determined at pre-culture and after 3 days 

culture with immobilize urelumab, immobilized 41BB-Fc with or without GMCSF. (E) Representative histogram 

for 41BB and 41BBL expression on healthy donor myeloid cells. Gray=fluorescence minus one (FMO), Black=pre-

culture, Red=3 days culture with GMCSF. (F) Histograms showing the expression of cell surface markers before 

and after culture with indicated conditions for one representative donor. Each condition is indicated on the far left. 

(G) Heatmap representing the fold change in MFI for respective cell surface markers comparing cell culture 

conditions to media alone control for 3 individual donor cells. (H) Fold change of CD86 expression normalized to 

media control. (I-P) Supernatants from donor myeloid cell cultures were collected after 3 days incubation with 

indicated conditions. Each line represents myeloid cells from an individual donor. 
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in myeloid cells by assessing cytokine production. We found that IL-4 and CCL2 expression was 

potently induced by GMCSF and to a lesser extent by 41BB and 41BB-Fc (Figure 10I-J). 

Similarly, IL-1β, IL-6, and IL-8 production was amplified by stimulation with GMCSF or 41BB-

Fc, but not 41BB (Figure 10K-M). CXCL10 expression was reduced by 41BB-Fc stimulation 

but maintained with GMCSF or 41BB alone (Figure 10N). In addition, myeloid cells readily 

produced IL-2 and TGF-β, but the culture conditions maintained or modestly increased the 

production of these cytokines (Figure 10O-P). In large part, 41BB activation alone via 41BB or 

its addition to GMCSF stimulus had little effect on cell viability, the expression of cell surface 

markers, or induction of cytokine expression (Figure 10D-P). Hence, it is possible that 41BB 

agonism on myeloid cells provides a weaker stimulus in comparison to reverse signaling through 

41BBL. 

 

The stimulation of TILs is potentiated by 41BBL on APCs 

The agonistic 41BB antibody urelumab does not compete with the binding of 41BBL to 

41BB, thereby preserving native 41BBL-mediated co-stimulation (140). Consistent with our data 

in Figure 6, the maturation of monocytes via 41BBL reverse signaling leads to an increased 

potential to prime T cells characterized by increased CD86 expression and enhanced production 

of IL-6 and IL-8 (135). Hence, we hypothesized that the enhancement of ex vivo TIL expansion 

by 41BB agonists may be aided by additional co-stimulation mediated by myeloid 41BBL. To 

determine this, we generated APCs from CD11b+ cells isolated from the pheresis product of a 

melanoma patient. The myeloid cells were incubated with immobilized 41BB-Fc for 3 days, 

collected, and then pulsed with autologous tumor lysate for 24hrs in the presence of GMCSF to 

generate 41BBL-conditioned APCs (41BBL APCs). First, we examined if 41BB could 

augment the production of cytokines in TIL co-cultures with autologous tumor or pulsed APCs. 



www.manaraa.com

38 

 

A variety of cytokines were detected in cultures containing TILs stimulated with αCD3 or co-

cultures of TILs with autologous tumor cells. In particular, the combined stimulation of TILs 

with αCD3 and 41BB increased the production CXCL10 and IFN-γ (Figure 11A). As expected, 

IFN-γ and TNFα were induced in TIL co-cultures with tumor cells, which were effectively 

reduced by MHC-I blockade (Figure 11B). Next, we determined the cytokine profile in TIL co-

cultures with autologous APCs. When cultured alone, the 41BBL APCs produced high amounts 

of CCL2 and IL-8, and modest amounts of IL-2, TGF-β, and IL-1β, which was not impacted by 

additional stimulation with soluble 41BB (Figure 11C). In comparison to unstimulated TILs 

and cultures with 41BBL APCs only, CXCL10, IL-2, IFN-γ, IL-1β, TGF-β, and IL-6 were 

elevated when TILs were cultured with APCs, which the production of some cytokines was 

augmented by the addition of agonistic 41BB and/or 41BBL blocking antibodies (α41BBL) 

(Figure 11D). Likewise, the addition of 41BB alone, 41BBL blockade alone, and/or the 

combination increased IFN-γ, IL-1β, and TGF-β. Moreover, IL-6 was absent in all conditions 

except in TIL-APC co-cultures with the addition of 41BB in combination with 41BBL 

blockade (Figure 11E).  CXCL10 was only detected TIL-APC co-cultures, which suggested that 

cell-cell contact facilitated the production of CXCL10. Accordingly, we found that the 

production of CXCL10 and IL-2 was only augmented by 41BBL blockade, which was enhanced 

when 41BBL blocking was combined with 41BB. Similarly, we observed that CXCL10 was 

elevated in Panc02-ZsGOVA tumors taken from mice treated with i.t. 41BB (Figure 12). Next, 

we demonstrated that TILs from this patient readily proliferated in co-cultures with αCD3 or 

irradiated autologous tumor cells compared to basal proliferation. The combination of 41BB 

with αCD3 enhanced TIL proliferation but was reduced when 41BBL antibodies were present in 

culture. However, the addition of 41BB and/or 41BBL did not alter TIL proliferation in 
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cultures with tumor cells. In parallel, we co-cultured TILs with autologous 41BBL APCs pulsed 

with tumor lysate in combination with soluble α41BBL and/or 41BB. 41BBL APCs induced 

the proliferation of TILs, which was negatively impacted by 41BBL blockade alone or in 

combination with 41BB, indicating that the blockade of 41BBL dampened TIL proliferation 

and that additional co-stimulation with 41BB was not sufficient to reverse this effect (Figure 

13). Together, these results demonstrate that myeloid 41BBL can contribute to the effect of 

41BB agonists characterized by enhanced TIL proliferation and production of cytokines. 

Discussion 

Overall, 41BB agonists are potent immune stimulators, but their translational potential 

has been heavily restricted by the onset of severe adverse events (141). Significant advancement 

in the development of tumor-selective 41BB agonists to limit or even eliminate any 41BB-

related adverse events has revitalized the therapeutic feasibility of targeting 41BB in humans 

(128, 142). While we did not evaluate toxicity in mice that received intratumoral injections of 

α41BB, we did not observe any overt toxicity during the administered treatment regimen. 

Overall, our data support that stimulating 41BB in tumors is a feasible approach to promote anti-

tumor immune responses. Consistent with other reports, the activity of 41BB agonists in our 

hands was not independent of changes to the myeloid-tumor immune milieu (143, 144). The anti-

tumor activity of 41BB agonists is greatly reduced in the absence of BATF3-dependent DCs, 

suggesting that 41BB agonists may act directly on the myeloid compartment to promote the 

eradication of tumors in mice (143). Indeed, we observed that treatment with 41BB agonists in 

mice led to increases in monocytes and PMNs coincided by a depletion of macrophages and DCs 

within tumors. Furthermore, myeloid cells from α41BB-treated tumors induced the upregulation 

of 41BB on CD8+ T cells and enhanced the production of IFN-γ in vitro (Figure 7J-N). Hence, it  
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Figure 11. Cytokine production in TIL-APC co-cultures. TILs from a melanoma patient were cultured with 

αCD3, autologous tumor cells at a 1:1 ratio, or tumor-lysate pulsed 41BBL-APCs at a 1:10 ratio for 72hrs. (A-B) 

Heatmap representing cytokine abundance in supernatants from cell cultures were collected at 72hrs. Numerical 

values are indicated for each parameter with its respective condition. Cytokine production by TIL stimulated with 

αCD3 +/- urelumab (A). Cytokines in TIL-tumor co-cultures +/- α41BB or MHC-I blocking antibodies (B). (C) 

41BBL APCs were generated and then pulsed with autologous tumor lysate in the presence of GMCSF. Pulsed 

APCs were then seeded in culture wells with or without α41BB. (D) Cytokines were measured in the supernatants of 

TIL-APC co-cultures incubated with α41BB and/or α41BBL. TIL only condition is the same data from (B); APCs 

only from (C). Statistics are indicated for cytokines that are higher than both TILs alone and APCs alone conditions. 

(E) Fold change in cytokine induction vs. TIL+APCs in co-cultures from (D). Dotted line represents the basal 

induction of cytokines in TIL-APC co-cultures. ND=not detected 
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Figure 12. Sustained 41BB agonism enhances CXCL10 expression in mouse tumors. Tumors were collected 

from Panc02-ZsGOVA tumor bearing mice treated with i.t. isotype or α41BB antibodies. Tumors were cultured 

overnight in media +/- α41BB overnight. CXCL10 production was quantified in the supernatant (n=5 mice per 

group). Significance was determined by two-tailed student t test with Welch’s correction. 

 

 

 

 
Figure 13. 41BBL is necessary to induce TIL proliferation in co-cultures with APCs. TIL proliferation in co-

cultures was determined in the final 18hrs of the culture by 3H thymidine incorporation in the presence of soluble 

α41BB and/or soluble α41BBL. Dotted line represents basal TIL proliferation without additional stimulation. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Significance was determined by two-tailed t-test or 2-way 

ANOVA with Dunnett’s multiple comparisons. 

 



www.manaraa.com

42 

 

is possible that myeloid cells contribute to the efficacy of 41BB activation in vivo by inducing 

the upregulation of surface 41BB on T cells. We show that IL-10 was essential for restricting 

both the production of IFN-γ and the expression 41BB on T cells (Figure 7J, L). While DCs and 

TAMs increased their production of IL-10 and IL-12 in response to 41BB agonism, the i.t. 

administration of α41BB simultaneously promoted the accumulation of monocytes and PMNs 

that produced IL-6, IL-12, IL-10, and TNF-α (Figure 7E-H). Thus, both the proportionality and 

function of distinct intratumoral myeloid cells are likely relevant factors in driving anti-tumor 

immune responses elicited by 41BB agonists.  

It has been described that species differences exist between mouse and human myeloid 

cells in response to 41BBL signaling (145). While, we did not evaluate the role of 41BBL in 

murine models, the data we present in human cell culture systems provide relevance for the role 

of 41BBL in the ability of myeloid cells to potentiate T cell responses. Importantly, the 

upregulation of co-stimulatory markers, such as CD80 and/or CD86, in both mouse and human 

myeloid cells were consistent after exposure to 41BB or 41BBL stimulation suggesting that there 

are similar mechanisms dictating myeloid cell co-stimulatory responses in tumors after treatment 

(96). In this study, we found that 41BB agonism, contrary to 41BBL stimulation via 41BB-Fc, 

had little effect in augmenting human myeloid cell phenotypes and cytokine production (Figure 

10). This, perhaps, was not surprising because CD11b+ cells expressed little to no 41BB on their 

cell surface (Figure 10A-C). Concordantly, the stimulation of myeloid cells with a 41BB agonist 

alone failed to sustain myeloid cell viability, increase CD86 expression, or provide other 

maturation stimuli even when combined with GMCSF. Moreover, the addition of 41BB to 

tumor-lysate pulsed APCs did not significantly alter basal cytokine production (Figure 11C). 

Hence, the 41BB agonist used in these experiments appears to be a weak stimulator of myeloid 
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cells at best. In mice, the engagement of 41BBL on myeloid cells by its cognate receptor, 41BB, 

restricts the accumulation of IL-12+ cDCs and TAMs within tumors, leading to a diminished 

ability to control tumor growth (144). In a contradictory manner, 41BB knockout mice exhibit 

remarkably similar anti-tumor immune responses to mice treated with agonistic 41BB antibodies, 

which supports the hypothesis that the lack of interaction between 41BB with 41BBL on myeloid 

cells promotes anti-tumor immune responses. However, the evidence we provide in this study 

demonstrates that reverse 41BBL signaling can promote the immunostimulatory capacity of 

monocytes and APCs in humans. Consistent with previous reports in human cells (139, 146), we 

show that the induction of reverse 41BBL signaling in human monocytes via 41BB-Fc promoted 

the expression of co-stimulatory markers CD86 and 41BBL, while simultaneously increasing the 

production of IL-8, IL-6, IL-1, CCL2, and IL-4 (Figure 10I-P). Thus, differences among 

species and experimental murine tumor models likely contribute to the contrasting findings in 

reports investigating the role 41BB-41BBL co-stimulatory axis in anti-tumor immunity. 

Together, these results demonstrate that the 41BB agonists may not act directly on human 

myeloid cells alone to promote the co-stimulatory capacity of APCs. Rather the activation of 

41BBL, and potential bidirectional signaling between myeloid cells and T cells, were responsible 

for providing efficient maturation stimuli to enhance the capacity of APCs to prime T cells.   

In contrast to other 41BB agonistic antibodies, urelumab facilitates the cross-linking of 

41BBL to 41BB, suggesting that bidirectional signaling orchestrated by 41BBL+ cells could 

augment the agonistic activity of 41BB (140, 147). We provide evidence here that the 

activation of 41BBL can contribute to the expansion of TILs stimulated with 41BB agonists 

because the proliferation of TILs cultured with 41BBL-conditioned APCs was reduced when 

41BBL was blocked, even in the presence of urelumab (41BB) (Figure 13). Intriguingly, 
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CXCL10 was elevated in TIL-APC co-cultures when 41BBL was blocked. Consistent with this 

data, the production of CXCL10 was reduced in donor myeloid cells conditioned with 41BB-Fc 

(Figure 9N), suggesting that the stimulation of 41BBL on myeloid cells represses CXCL10 

expression which may have been relieved when blocking antibodies were present in TIL-APC 

co-cultures. Moreover, we acknowledge that IFN-γ is a known inducer of CXCL10, a maturation 

factor for DCs (100), and can enhance the ability of 41BBL-APCs to prime cytotoxic T cell 

responses (148). Hence, it is possible that the induction of CXCL10 could have been indirectly 

promoted in the presence of α41BB through an increased abundance of IFN-γ. While, the 

blockade of 41BBL can prevent the induction of T cell proliferation through interaction with its 

cognate receptor, we cannot rule out the possibility that the production of cytokines, such as IL-

6, IL-1β, and TGF-β by APCs may also have an impact on TIL proliferation. However, the 

cellular origin and the specific activity of these cytokines on TIL proliferation and function 

remains unclear. Hence, future studies need to determine the role of 41BB-41BBL induced 

cytokines, including CXCL10, IL-6, IL-1β, and TGF-β and their impact on both, the expansion 

of TILs and the activity of 41BB agonists. 

In our previous report, the addition of 41BB was associated with enhanced TIL 

expansion and the modulation of tumor-resident DC phenotypes characterized by the 

upregulation of CD80, CD86, and MHCII (96). We conclusively demonstrated that myeloid cells 

upregulated co-stimulatory markers CD86 and 41BBL and proinflammatory cytokines in 

response to 41BBL stimulation, but not in response to 41BB agonists. Moreover, tumor-lysate 

pulsed APCs that were matured via reverse 41BBL signaling effectively primed TILs. Together, 

our findings provide feasibility that 41BB-41BBL bidirectional signaling between immune cells 

can be exploited to enhance to the expansion and function of TILs (Figure 14). 
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Figure 14. Potential mechanisms of 41BB agonism in the context of APC-mediated stimulation 

(A) T cells that receive no TCR stimulation or 41BB co-stimulation are not activated. (B) Peptide presentation by 

APCs via MHC-I and co-stimulation provided by 41BBL stimulates T cell activation. (C) Certain 41BB agonistic 

antibodies can augment T cell activation by allowing 41BBL on APCs and 41BB agonists to provide a dual signal to 

T cells resulting in a strong activation stimulus. (D) Other 41BB agonistic antibodies bind to the native 41BBL 

binding domain on 41BB, preventing the simultaneous activation stimuli provided by agonistic antibodies and 

41BBL. 
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Methods 

Human TIL specimens and tumor digest preparation 

Preparation of TIL was performed as previously described (8). Briefly, surgically 

resected tumors were minced to 1mm fragments and placed into individual wells of a 24 well 

plate containing 6000IU/mL IL-2 (aldesleukin, Prometheus Laboratories). TILs were expanded 

for up to 5 weeks and then tested for IFN-gamma production in co-cultures with autologous 

tumor cell lines or cryopreserved tumor digest cell suspensions. IFN-gamma+ TILs underwent a 

rapid expansion protocol (REP) and were then cryopreserved in 90% human serum with 10% 

dimethyl sulfoxide (DMSO). A fully human IgG4 monoclonal agonistic anti–41BB antibody 

(41BB mAb;BMS-663513, urelumab, Bristol-Myers Squibb) was added with media containing 

6000IU/mL IL-2 to tumor fragments at the initiation of TIL expansion. Thereafter, TILs were fed 

every 3-4 days with media containing 6000IU/mL IL-2 only. Cyropreserved TILs were thawed 

and rested in media containing 3000IU/mL IL-2 for 3-4 days before being subjected to further 

stimulation and co-culture conditions. For the preparation of tumor digests, the remaining tumor 

tissue was suspended in digestion media containing collagenase type II and type IV, 

hyaluronidase, and DNAse I (all from Fisher Scientific) and then subjected to GentleMACS 

dissociation (Miltenyi Biotec). Tumor digest cell suspensions were incubated at 37C in a 

rocking water bath for 1hr and then filtered with 100M cell strainers to remove large cellular 

debris.   

Isolation and culture of human myeloid cells from peripheral blood mononuclear cells 

Peripheral blood mononuclear cells (PBMCs) were obtained from the whole blood of 

healthy donor volunteers or apheresis product from melanoma patients. For whole blood, 
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PBMCs were prepared by Ficoll-Pacque (GE Healthcare) and then cryopreserved. Thawed 

PBMCs were labeled with CD11b microbeads human and mouse (Miltenyi Biotec, 130-49-601) 

for magnetic activated cell sorting. Purity of CD11b+ cells was >90%. For healthy donor myeloid 

cells, 2.5x105 cells were cultured in 6 well plates coated with 10g/mL 41BB or 10g/mL 

41BB-Fc (R&D Systems) in media alone or media containing 100ng/mL human GMCSF 

(Peprotech) for 3 days. For the generation of APCs, CD11b+ cells from the pheresis product of a 

melanoma patient were cultured with 10g/mL immobilized 41BB-Fc for 3 days. Adherent cells 

were dissociated using Accutase (STEMCELL Technologies) and gentle pipetting. Cell lysate 

from an autologous melanoma cell line was prepared by suspending cells at 30x106/mL in PBS 

and exposure to repeated and alternating temperatures (solid CO2 ice and 37C water). Five 

cycles of alternating temperature exposure at 5-minute intervals were performed. Three cell 

equivalents of tumor cell lysate were added to 1x106 41BB-Fc conditioned APCs in media 

containing 100ng/mL GMCSF and incubated overnight. Tumor-lysate pulsed APCs were then 

dissociated using Accutase and gentle pipetting before co-culture with TILs as described below. 

Cytokines in supernatants were measured by LEGENDplex HU Essential Immune Response 

Panel (BioLegend) and acquired via BD FACSCelesta. 

Human TIL co-culture assays 

Thawed autologous tumor cell suspensions were added to 96-well round-bottom plates at 

a 1:1 ratio with TILs and cultured for 24hrs. Anti-human HLA-A,B,C (W6/32, BioLegend) was 

added to tumor cells at a concentration of 10g/mL and incubated for 1hr at 37C before adding 

TILs to respective wells. Anti-human CD3 (OKT3, Ortho Biotech Inc., Bridgewater, NJ) was 

immobilized on the bottom of wells at 5g/mL. Supernatants were collected after 24hrs of TIL-

tumor digest co-cultures and IFN-gamma was measured in supernatants via IFN-gamma ELISA 
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(BD Biosciences). For TIL co-cultures with autologous tumor cell lines or autologous tumor-

lysate pulsed APCs, supernatants were collected after 72hrs of cultures. Prior to co-culture, 

autologous tumor cell lines were subjected to X-ray irradiation at a dose of 2x104 rad. TILs were 

co-cultured at a 10:1 ratio with irradiated tumor cells or tumor-lysate pulsed APCs. Where 

indicated, soluble 10g/mL 41BB or anti-41BBL (5F4, BioLegend) was added to TIL co-

cultures. Cytokines in supernatants were measured by LEGENDplex HU Essential Immune 

Response Panel (BioLegend) and acquired via BD FACSCelesta. Proliferation was measured by 

3H thymidine uptake (1Ci added per well) during the final 18hrs of co-culture.  

Detection of cytokines from primary melanomas 

Tumor digest cell suspensions were prepared as described above. One million cells were 

seeded in 48 well plates containing media with or without 6000IU/mL IL-2 in combination with 

soluble 41BB (10g/mL). After 24hrs, cell-free supernatants were collected and stored at -80C 

until ready for analysis. Cytokines in supernatants were measured by LEGENDplex HU 

Essential Immune Response Panel (BioLegend) and acquired via BD FACSCelesta. 

Flow cytometry 

Mouse spleens and tumors were harvested under sterile conditions. Spleens were 

homogenized by applying pressure to tissue on 100μm cell strainers. Single-cell suspensions 

were prepared, and red blood cells were removed using red blood cell lysis buffer (BioLegend). 

The resulting suspension was passed through a 70μm cell strainer and washed once with PBS. 

Mouse tumor cell suspensions were prepared by enzymatic digestion with media (Hank’s 

Balanced Salt Solution, Life Technologies) containing 1mg/mL collagenase IV, 0.1mg/mL 

DNAaseI, and 2.5 U/mL hyaluronidase (all from Sigma Aldrich) and then subjected to 
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GentleMACS dissociation (Miltenyi Biotec). Tumor digest cell suspensions were incubated at 

37C in a rocking water bath for 1hr. Red blood cells were removed using red blood cell lysis 

buffer (BioLegend) and then cell suspensions were filtered with 100M cell strainers to remove 

large cellular debris. Cells were resuspended to a concentration of 0.5-1x106 cells/mL for flow 

cytometric analysis in FACS Buffer containing PBS, 5% fetal bovine serum, 1mM 

Ethylenediaminetetraacetic acid (EDTA) (Sigma Aldrich), and 0.1% sodium azide (Sigma 

Aldrich). Cell viability was measured by staining cell suspensions with ZombieNIR 

(BioLegend). Prior to surface staining, cells were incubated with Fc Shield (TonboBiosciences) 

for murine specimens and Fc Blocker (Miltenyi Biotec) for human specimens. For surface 

staining of murine specimens, cells were stained in FACS buffer with the following antibodies: 

CD3 (145-2C11), CD4 (GK1.5), CD8 (53-6.7), CD11b (M1/70), Ly6G (1A8), Ly6C (HK1.4), 

F4/80 (BM8), CD11c (N418), MHCII (M5/114.15.2), CD80 (16-10A1), CD86 (GL-1), PD-1 

(29F.1A12) (all from BioLegend); 41BB (17B5-1H1, Miltenyi Biotec). For intracellular cytokine 

detection, cells were incubated for 18hrs with 1X Brefeldin A (BioLegend), stained with cell 

surface antibodies, subjected to fixation and permeabilization via Fixation and Permeabilization 

Solution Kit (BD Biosciences), and then stained anti-mouse antibodies against IL-12p40/p70 

(BD Biosciences), IL-6 (MP5-20F3), IL-10 (JES5-16E3), TNF (MP6-XT22) (all from 

BioLegend). For human specimens, cell surface staining was conducted with the following 

antibodies: CD3 (145-2C11), CD4 (RPA-T4), CD8 CD11c (Bly6), CD14 (MoP9), CD15 (HI98), 

CD11b (ICRF44), HLA-DR/DP/DQ (Tu39), CD86  (all from BD Biosciences); PD-L1 (29E-

2A3), 41BBL (5F4), 41BB (4B4-1), CD45 (2D1) (from BioLegend); CD141 (AD5-14H12) 

(Miltenyi Biotec). Cells were acquired by FACS Celesta (BD Biosciences), and the data were 

analyzed with FlowJo (Tree Star). 



www.manaraa.com

50 

 

Mouse models 

Female C57BL/6 mice (6–8 weeks old) were purchased from Charles River Laboratories 

(Wilmington, MA). OT-I mice (originally obtained from Jackson Laboratories) were bred and 

housed at the Animal Research Facility of the H. Lee Moffitt Cancer Center and Research 

Institute. Mice were humanely euthanized by CO2 inhalation and secondary cervical dislocation 

according to the American Veterinary Medical Association Guidelines. Mice were observed 

daily and were humanely euthanized if a solitary subcutaneous tumor exceeded 400 cm2 in area 

or mice showed signs referable to metastatic cancer. 

Murine cell lines and in vivo treatment 

B16 melanoma, Panc02 pancreatic cancer, MC38 colorectal cancer cell lines (all obtained 

from ATCC), were cultured in complete media (CM): RPMI media supplemented with 10% 

heat-inactivated FBS, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 2 mM fresh L-

glutamine, 100 mg/ml streptomycin, 100 U/ml penicillin, 50 mg/ml gentamicin, 0.5 mg/ml 

fungizone (all from Life Technologies, Rockville, MD), and 0.05 mM 2-ME (Sigma-Aldrich, St. 

Louis, MO). B16 melanoma with pAc-neo-OVA plasmid (B16-OVA) was maintained in media 

with 0.8mg/mL G418 as previously described (137). To generate the ovalbumin (OVA) 

expressing fluorescent Panc02 cell line, cells were exposed to supernatants containing a lentiviral 

vector comprised of a fluorescent ZsGreen (ZsG) protein and OVA. Upon successful 

transfection, ZsGreenhi tumor cells were subjected to FACS using BD FACSAria. OVA-

ZsGreenhi tumor cells were passaged in vitro 4 times whereby OVA expression was validated by 

staining for H2-Kb bound to SIINFEKL peptide (25-D1.16, BioLegend). The cell lines tested 

negative for mycoplasma contamination. All cell lines were passaged less than 10 times after 

initial revival from frozen stocks. All cell lines were validated in core facilities prior to use. 
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Tumor cells (1x105) were implanted subcutaneously in the flank of mice. When tumors reached 

~25mm2, 75g of InVivoPlus anti-mouse 41BB (clone LOB12.3) or rat IgG1 isotype control, 

anti-horseradish peroxidase (both from BioXCell), were injected in 50L volume intratumorally. 

Injections were repeated twice weekly until experimental endpoint. In some experiments, anti-

mouse 41BB (clone LOB12.3) or rat IgG1 isotype control, anti-horseradish peroxidase were 

injected with 300g of antibody twice weekly until experimental endpoint. For CD8 T cell 

depletion, 300g of InVivoPlus anti-mouse CD8 (BioXCell) were injected intraperitoneally 

twice weekly for the duration of the experiment. CD8 T cell depletion was initiated prior to 

treatment with isotype or 41BB antibodies.  

Tumor-myeloid cell co-culture with OT-I T cells 

Myeloid cells were isolated from MC38 tumors after treatment with isotype or 41BB 

antibodies using EasySep Mouse CD11b Positive Selection Kit II (STEMCELL Technologies). 

CD8 T cells were isolated from the spleens of OT-I mice using EasySep Mouse CD8 T cell 

Isolation Kit (STEMCELL Technologies). OT-I T cells were labeled with CellTrace Violet 

(Invitrogen) prior to co-culture. OT-I T cells were co-cultured with myeloid cells in media 

containing 1g/mL OVA(257-264) peptide with or without neutralizing antibodies for IL-10 (JES5-

2A5) or IL-12-p75 (R2-9A5) (both from BioXCell) at a concentration of 10g/mL each. Cells 

and supernatants were harvested after 72hrs incubation. IFN-gamma in supernatants were 

measured by (Mouse IFN-gamma Quantikine ELISA Kit, R&D Systems).  
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Isolation of murine TILs 

TILs from mice with MC38 tumors were isolated after treatment with isotype or 41BB 

antibodies using EasySep Mouse CD90.2 Positive Selection Kit II (STEMCELL Technologies). 

TILs were cultured in round-bottom 96 well plates with immobilized anti-CD3 antibodies (145-

2C11 BD Biosciences) at a concentration of 5g/mL or with irradiated tumor cell lines. MC38 or 

irrelevant target B16 tumor cells were exposed to X-ray irradiation at a dose of 2x104 rad and 

cultured with CD90.2+ TILs at a 1:10 (target:TIL) ratio for 48hrs. Supernatants were collected 

and IFN-gamma was measured by (Mouse IFN-gamma Quantikine ELISA Kit, R&D Systems). 

Statistical analysis 

Graphs were generated using GraphPad Prism software. Graphs represent mean values 

with SEM. P values were calculated in each respective figure where statistical tests were 

indicated. For mouse-tumor growth studies, tumor growth curves are shown as mean with SEM 

and significance was determined by 2-way ANOVA and Sidak’s multiple comparison’s test. 

Mice were randomized after tumor cell implantation into respective treatment groups. Tumors 

were measured with Vernier calipers. Experimental groups were blinded to the operator 

throughout the duration of the experiment. For all other experiments, data were compared using 

either an unpaired 2-tailed Student’s t-test corrected for multiple comparisons by a Bonferroni 

adjustment or Welch’s correction. *=P<0.05; **=P<0.01; ***=P<0.001; ****=P<0.0001. 

Study Approval 

Studies were performed under approved Institutional Review Board (IRB) laboratory 

protocols at the H. Lee Moffitt Cancer Center (Tampa, FL). TIL, PBMC, and autologous tumors 

were collected from melanoma patients or PBMC from lung tumor patients as part of TIL ACT 
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clinical trials. All samples were de-identified prior to use in research studies. All patients signed 

approved consent forms. All animal experiments were approved by the University of South 

Florida Institutional Animal Care and Use Committee and performed in accordance with the U.S. 

Public Health Service policy and National Research Council guidelines. 
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CHAPTER THREE 

REACTIVE MYELOPOIESIS TRIGGERED BY LYMPHODEPLETING 

CHEMOTHERAPY LIMITS THE EFFICACY OF ADOPTIVE T CELL THERAPY 

 
A note to the reader: the majority of this chapter has been published in a research article 

in Molecular Therapy, Innamarato et. al., 2020 Jun 24;S1525-0016(20)30315-4. 

doi:10.1016/j.ymthe.2020.06.025. 

Introduction 

Cancer co-opts myeloid cells to promote immunosuppression and tumor progression 

The tumor microenvironment consists of a heterogeneous population of tumor cells, 

endothelial cells, fibroblasts, and a variety of immune cells. Macrophages, dendritic cells, 

monocytes, granulocytes have been associated with poor survival and therapeutic relapses in 

cancer patients (149, 150). In addition, tumor cells produce factors that promote myeloid cells to 

facilitate angiogenesis, tissue remodeling, invasion, metastasis, and immunosuppression (151). 

Hence, the targeting of tumor-associated myeloid cells can provide therapeutic benefit by 

limiting tumor progression and reducing immune dysfunction. Currently, several approaches to 

targeting tumor-associated myeloid cells have been investigated in clinical trials including: 

facilitating macrophage phagocytosis of tumor cells by CD47 or SIRPα blockade (152), 

macrophage depletion via CSF-1/CSF-1R antibodies (153, 154), reprogramming of tumor 

associated-macrophages by BTK inhibition, PI3K-gamma inhibition (155, 156) or CD40 

agonism (157), chemotaxis blockade via CCR2 (158), CXCR2 (159), and CXCR4 (160), and 
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depletion of myeloid-derived suppressor cells (MDSCs) by Death receptor 5 (DR5) agonistic 

antibodies (161).  The diverse nature of myeloid cells in the tumor microenvironment 

underscores the importance of these cells in facilitating immune suppression and tumor 

progression. Thus, there are many opportunities to exploit myeloid cell biology to develop novel 

therapeutic strategies as anti-cancer treatments, which facilitate the immune system to eradicate 

tumor cells.  

Myeloid-derived suppressor cells are orchestrators of tumor-mediated immunosuppression 

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature 

monocytes and granulocytes that possess potent immunosuppressive functions. In healthy 

individuals, MDSCs are exceedingly rare, but expand during pathological states. 

Immunosuppression by MDSCs has been most widely described in the setting of cancer, but 

MDSCs also play an important role in preventing graft-versus-host disease (GvHD), organ graft 

rejection, maternal-fetal tolerance, autoimmune diseases, and bacterial infection (162). Two 

subsets of MDSCs have been widely described: Polymorphonuclear (PMN) MDSCs and 

monocytic (M-MDSCs). PMN-MDSCs resemble neutrophils while M-MDSCs share similar 

phenotypes to monocytes (163). A third subset of MDSCs, known as early MDSCs (e-MDSCs) 

was recently described, but these cells have not been robustly characterized (161).  

A key distinction between MDSCs and normal physiologic neutrophils and monocytes is 

the ability of MDSCs to suppress T cell proliferation and effector functions (164, 165). MDSCs 

can inhibit T cell proliferation, cytokine production, lymph-node homing, and induce T cell 

apoptosis (166, 167). MDSCs possess an arsenal of functions that promote immunosuppression 

including: 1. The production of reactive oxygen species and peroxynitrite, which causes damage 

to lipid bilayers, induces DNA damage, and disrupts T cell receptor – MHC interactions  
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Figure 15. MDSCs are dynamic immunosuppressive cells that promote tumor progression. 

MDSCs inhibit anti-tumor immunity via the production of cytokines and growth factors, depletion of amino acids, 

and promotion oxidative stress via ROS/NOS. Tregs and TH17 cells can be induced by MDSC-derived cytokines 

including IL-10, TGF-β, IL-6, and IL-17. In contrast to terminally differentiated PMN-MDSCs, M-MDSCs can 

differentiate into macrophages which promote tumor progression. Likewise, wound-healing functions of MDSCs 

promote tumor progression through augmenting angiogenesis and perpetuating the EMT/metastatic cascade through 

the production of growth factors, proteases, cytokines, and ROS. Systemically, the immune response can be 

disrupted through the production of ADAM17 by MDSCs which cleave CD62L and prevent lymph node homing of 

circulating T cells. 

 

(168, 169), 2. The depletion of microenvironmental amino acids via arginase activity, indolamine 

2-3 dioxygenase activity, and cysteine sequestration (170-172), 3. The production of cytokines 

and growth factors including, IL-6, IL-10, PGE2, and TGF-β that directly suppress T cells and 

promote immunosuppressive phenotypes of DCs, macrophages, and T regulatory cells (167, 



www.manaraa.com

57 

 

173).  Additional mechanisms of MDSC-mediated immunosuppression and the promotion of 

tumor progression have been described in recent review articles (166, 167, 174). Hence, MDSCs 

act as a suppressive regulator of anti-tumor immunity through the direct suppression of T cells 

and the promotion of suppressive immune cells. 

 

Reactive myelopoiesis – an immunological process that promotes MDSC accumulation  

The hematopoietic differentiation trajectory and the function of the immune system are 

hijacked by tumors to promote a growth advantage and evade immune clearance. While tumors 

cells can induce the polarization of mature myeloid cells such as macrophages and dendritic 

cells, the skewing of myeloid cell populations is profoundly impacted at the level of 

hematopoietic stem and progenitor cells (HSPCs). Under normal physiologic conditions, HSPCs 

differentiate to myeloid, lymphoid, and erythroid progenitors and maintain a balance between the 

frequency and turnover of individual immune cell subsets. However, during infection with 

pathogenic microbes, an immunological process known as “emergency myelopoiesis” bone 

marrow derived neutrophils and monocytes are rapidly mobilized into the peripheral blood and 

tissues to mediate an immune response to the pathogen. Simultaneously, HSPCs within the bone 

marrow proliferate and subsequently differentiate to neutrophils and monocytes, resulting in a 

massive increase in the number of circulating myeloid cells (175). This process can continue 

until the pathogen is cleared. Fascinatingly, this myelopoietic-driven stress response is tightly 

regulated and the unchecked proliferation and differentiation of HSPCs during emergency 

myelopoiesis can lead to bone marrow failure and lethality despite the clearance of a 

pathological stimulus (176). Hence, both the clearance of a pathogen and the resolution of 

inflammation are critical for a host’s immune system to return to homeostasis.  
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The term emergency myelopoiesis has been used to describe the enhanced production of 

neutrophils and monocytes in the presence of a microbial pathogen. However, in the absence of a 

microbe, the mechanisms driving an enhanced accumulation of myeloid cells are independent of 

stimulation via bacterial components, such as LPS. Therefore, the term “reactive myelopoiesis” 

has been adopted to describe the immunological response of HSPCs, granulocytes, and 

monocytes caused by tumor-induced inflammation or chemical compounds, including 

chemotherapy agents (175). Indeed, overlapping mechanisms can be observed in emergency and 

reactive myelopoiesis. However, the origin of the stimulus and ensuing immunological 

consequences differ between these immunological phenomena. In the instance of sepsis, the 

myelopoietic response is acute and resolves once the pathogen is cleared. However, a chronic 

inflammatory state also promotes an aberrant generation and abundance of myeloid cells that do 

not exhaust HSPCs or lead to bone marrow failure. Under chronic cancer-induced inflammation, 

the result of reactive myelopoiesis is an increase of MDSCs. A variety of tumor-derived 

cytokines and growth factors have been implicated in skewing the differentiation of HSPCs 

toward the development of MDSCs such as retinoic acid, G-CSF, GM-CSF, PGE2, and IL-6 

(167, 177, 178). Together, tumor cells, constituent stromal cells, and infiltrating immune cells 

produce factors that can act distally on HSPCs within the bone marrow space to skew the 

differentiation of HSPCs to MDSCs and promote their chemoattraction to tumor beds (151, 174, 

179). During tumor progression, an increased accumulation of MDSCs accumulation is observed 

within cancer patients presumably because the increased systemic inflammation further drives 

reactive myelopoiesis (180-182). This is evidenced by increases in MDSC-promoting cytokines 

such as IL-6 and IL-8 in association with an elevated frequency of MDSCs that correlates with 
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the stage of cancer and patient survival (180, 182, 183). Thus, the inhibition of MDSCs in cancer 

patients is crucial to promote anti-tumor immune responses and restrict immunosuppression. 

 
Figure 16. Reactive myelopoiesis is a driver of tumor-induced immunosuppression.  

In the steady state, a balance between myeloid and lymphoid lineages are maintained. In the case of sepsis, the 

systemic bacterial infection drives emergency myelopoiesis resulting in the massive production of myeloid cells 

from the bone marrow. A similar process occurs when tumors are present and produce myelopoietic factors to 

enhance myeloid progenitor mobilization and the accumulation of monocytic and granulocytic cells (particularly 

MDSCs). Certain chemotherapeutic agents can exacerbate reactive myelopoiesis and simultaneously reduce the 

number of lymphocytes. It is not fully understood if the myeloid cells that expand during emergency myelopoiesis 

act primarily to eliminate microbes and hold immunosuppressive roles. In contrast, the anti-microbial role of highly 

immunosuppressive MDSCs during reactive myelopoiesis has not been rigorously evaluated.  
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The role of reactive myelopoiesis in Adoptive T cell Therapy 

As outlined in the previous section of this chapter, the accumulation of MDSCs is 

resultant of chronic inflammation induced by tumors but can also be promoted by treatment with 

certain cytotoxic chemotherapy agents. In addition to its use for lymphodepleting regimens in 

patients receiving ACT and its use as a tumor-cytotoxic agent, cyclophosphamide has long been 

used to mobilize hematopoietic stem and progenitor cells (HSPCs) for autologous hematopoietic 

stem cell transplantation (HSCT). Subsequently, reactive myelopoiesis takes place after 

treatment with cyclophosphamide. However, the immunosuppressive capacity of myeloid cells 

that accumulate during this immunologic state has not been robustly evaluated (184-187). In 

adoptive T cell therapy settings, combinatorial approaches with HSCT have been successfully 

used to treat patients with hematologic malignancies (21, 48). In contrast, the benefit of 

combining ACT with HSCT in solid tumors settings, such as melanoma, remains unclear (27). 

Consequently, the specific mechanisms regulating the differentiation of immune cells from 

HSPCs and their ensuing impact on anti-tumor immune functions during the course of ACT for 

the treatment of cancer remains unknown. Thus, the work described in this chapter addresses 

these gaps of knowledge in the field of ACT in cancer and identifies mechanisms dictating 

myelopoiesis during immune recovery after lymphodepleting chemotherapy treatment that can 

be exploited to enhance the efficacy of ACT. 
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Results 

The accumulation of myeloid cells reduces the therapeutic efficacy of ACT with tumor 

infiltrating lymphocytes 

We examined myeloid cell recovery in melanoma patients after treatment with a 

lymphodepleting regimen and infusion of autologous TIL. As expected, patient peripheral blood 

mononuclear cell (PBMC) counts reached their nadir (Day 0) upon completion of a 

cyclophosphamide-fludarabine (Cy/Flu) lymphodepleting chemotherapy regimen, which 

rebounded after infusion with autologous TIL (Figure 17). Despite the rebound of total PBMC 

counts, the proportionality of myeloid cells significantly increased in comparison to their 

respective pre-treatment frequencies (Figure 18). We found that nearly all patients exhibited 

increases in CD11b+ myeloid cells and subsets, CD11b+HLA-DR-/lowCD14- cells and 

CD11b+HLA-DR-/lowCD14+ cells (M-MDSCs), 1-week post-TIL infusion (Figure 19). We 

confirmed that these myeloid cell populations suppressed T cell proliferation (Figure 20A). 

Additionally, M-MDSCs isolated from Week 1 Post-TIL infusion PBMCs suppressed autologous 

TIL proliferation in response to αCD3/αCD28 stimulation and autologous tumor stimulation 

(Figure 20B-C). We confirmed that PMN-MDSCs (CD11b+CD15+LOX-1+ cells) were elevated 

in two melanoma patients at Week 1 Post-TIL infusion (Figure 20D-E, Figure 21) (165). PMN-

MDSCs and M-MDSCs purified from Week 1 PBMCs suppressed autologous TIL production of 

IFN-γ (Figure 20E). Furthermore, we confirmed that MDSCs collected at pre-treatment or at 

Week 2 post-TIL infusion potently suppressed donor T cell and TIL proliferation (Figure 22). 

We confirmed these findings by detecting increases of PMN-MDSCs after lymphodepletion and 

TIL infusion in 2 non-small cell lung cancer (NSCLC) patients (Figure 23).  
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Figure 17. The effect of lymphodepleting chemotherapy in melanoma patients receiving ACT with TILs. The 

total number of PBMCs were quantified in patients prior to lymphodepletion and TIL infusion (Pre-infusion), on the 

final day of chemotherapy treatment (Day 0), and one week after TIL infusion (Day 7). (n=10) 

 

 

 

 
Figure 18. Gating strategy for identification of myeloid cell subsets in patients.  

Starting from the left on Lin- (CD3-/CD19-/CD56-) CD11b+ cells. Arrow indicate directionality of subgates. 

Populations identified in Figure 1 were Lin-CD11b+CD14+HLA-DR-/low (far right) and Lin-CD11b+CD14-HLA-DR-

/low (bottom). 
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Figure 19. Myeloid cell frequency was determined by flow cytometry prior to and after treatment with 

lymphodepleting chemotherapy and TIL infusion in melanoma patients. The percentage and whole cell 

numbers of CD11b+ cells (A-B), CD11b+HLA-DR-/lowCD14- cells (C-D), and CD11b+HLA-DR-/lowCD14+ cells in 

PBMCs (E-F) (n=21). 
 

Figure 20. MDSCs suppress autologous TILs. 

(A) Suppression of donor T cell proliferation in co-cultures with indicated cell subsets isolated from patient PBMCs. 

(B-C) Suppression of TIL proliferation in co-cultures with autologous M-MDSCs with CD3/CD28 stimulation (B), 

or cultures with autologous tumor cells (C). (D) Frequency of PMN-MDSCs determined at Day -14 and Day 7 Post-

TIL. (E) Suppression of autologous TIL IFN-γ production by the patient’s CD14+ cells and PMN-MDSCs collected 

from Week 1 Post-TIL PBMCs. Individual data points represent technical replicates. 
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Figure 21. PMN-MDSCs are abundant after lymphodepletion and TIL infusion.  

(A) Frequency of PMN-MDSCs at Week 1 Post-TIL. (B) Frequency of PMN-MDSCs at Week 1 and Week 2 Post-

TIL. Suppression of donor T cell proliferation (C) and IFN-γ production by PMN-MDSCs (D). Technical replicates 

are shown. 

 

 
Figure 22. MDSC suppressive capacity before and after TIL infusion.  

(A-D) MDSC subsets taken from Pre-treatment blood (A), CD11b+HLA-DR-CD14+ cells from Pre-Treatment blood 

or Week 1 Post-TIL blood were cultured with donor T cells (B-D). (E-F) CD11b+HLA-DR-CD14+ cells from Week 

1 Post-TIL (E) or Week 2 Post-TIL (F) blood were cultured with autologous TILs. T cell proliferation was 

determined by 3H incorporation. Technical replicates are shown.  
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Figure 23. Expansion of MDSCs in NSCLC patients receiving ACT with TIL. 

(A) Gating strategy to identify PMN-MDSCs and M-MDSCs in NSCLC patient 1 at Day -8 before TIL infusion and 

Day 7 and Day 14 Post-TIL infusion and completion of a lymphodepleting chemotherapy regimen. Gates start from 

the percentage of live cells to subgates indicated by arrows with their respective frequency of parental gates. (B) 

Frequency of M-MDSCs and PMN-MDSCs of total live PBMCs at respective blood draws. (C-D) Suppression of 

IFN-γ production (C) and T cell proliferation (D) by PMN-MDSCs after 72hrs of co-culture. (E) Frequency of 

PMN-MDSCs of total live cells in NSCLC patient 2. (F-G) Suppression of T cell proliferation (F) and IFN-γ 

production (G) by PMN-MDSCs after 72hrs of co-culture. Technical replicates are shown. 

 
 

Because MDSCs were significantly elevated immediately after TIL infusion, we 

hypothesized that the abundance of MDSCs would be associated with clinical responses. 

Retrospective analysis revealed that higher frequencies of CD11b+ myeloid cells (greater than 
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the median of 41%) detected at Week 1 post-TIL infusion were associated with worse 

progression-free survival (PFS) and overall survival (OS) (Figure 24A-B). We identified similar 

survival trends when we examined survival associations with myeloid cell subsets 

(CD11b+HLA-DR-/lowCD14- cells and M-MDSCs) (Figure 24C-F). Additionally, an increased 

ratio of the number of CD11b+ cells relative to CD8+ T cells detected at Week 1 post-infusion 

was associated with poor survival (Figure 25). We identified that the number of TIL infused in 

each melanoma patient did not correlate with the frequency of CD11b+ cells, suggesting that the 

magnitude of myeloid cell accumulation after lymphodepletion is independent of TIL infusion 

(Figure 26A). Likewise, the frequency of CD11b+ cells in patients prior to receiving 

lymphodepletion and ACT with TIL did not have an impact on PFS, suggesting that the pre-

infusion myeloid cell abundance does not predispose patients to worse outcomes (Figure 26B). 

Because therapeutic responses to treatment with ACT with TIL are associated with the 

persistence of infused T cells (8, 72), we used TCRβ sequencing to identify persistent TIL clones 

after infusion. Strikingly, the frequency of infused TIL at Week 6 was inversely correlated with 

the frequency of CD11b+ cells at Week 1 Post-TIL infusion (Figure 27A). Next, we examined 

the persistence of the Top 50 TIL clones from the time of infusion to 6 weeks post-infusion 

(Figure 27B-C). Overall, the proportion of the Top 50 TIL clones among the total T cell pool 

varied greatly amongst patients (15.6% to 96%). Moreover, the sum frequency of the Top 50 

clones was reduced in all patients by Week 6 which was likely due to a dilution caused by the 

reconstitution of T cell clones that were not present within the infusion product (i.e. endogenous 

T cell clones) (Figure 28). Intriguingly, the persistence of the Top 50 TIL clones was negatively 

associated with the frequency of CD11b+ cells at Week 1 Post-TIL infusion. Specifically, 

patients that had a frequency of myeloid cells above the median (>41% CD11b+) at Week 1 Post-
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TIL infusion (CD11bhigh) exhibited a greater reduction in the frequency of the Top 50 TIL clones 

compared to patients that had <41% CD11b+ myeloid cells at Week 1 Post-TIL infusion 

(CD11blow) (Figure 29). We next divided the patients from Figure 27A into two groups to 

interrogate survival analysis based on both the frequency of TILs at Week 6 post-infusion and 

the matched frequency of CD11b+ cells at Week 1 post-infusion. The median Sum TIL 

frequency was 0.66 among patients (>0.66, TILhigh; <0.66 TILlow). We determined that the 

combined metrics encompassing both TIL frequency and CD11b+ cell frequency revealed that 

PFS and OS was poor in patients that exhibited low TIL persistence and a high frequency of 

CD11b+ cells (TILlowCD11bhigh) in comparison to patients that exhibited high TIL persistence 

and a low frequency of CD11b+ cells (TILhighCD11blow) (Figure 29). Collectively, these data 

demonstrate that the accumulation of immunosuppressive myeloid cells during treatment limits 

the efficacy of ACT with TIL, potentially by reducing the persistence of adoptively transferred 

tumor-specific T cells.    

 
Figure 24. The accumulation of MDSCs after lymphodepletion and TIL infusion is associated with patient 

outcomes.  

(A-F) Kaplan-Meier curves showing the PFS and OS in association with the frequency of CD11b+ cells (A-B), 

CD11b+HLA-DR-/lowCD14- cells (C-D), and M-MDSCs (E-F) at Week 1 Post-TIL.  

 

A       B             C 

D       E                       F 



www.manaraa.com

68 

 

 
Figure 25. The ratio of myeloid cells to CD8+ T cells is associated with poor patient survival.  

(A) The ratio of CD11b+ cells to CD8+ T cells was defined by the whole cell numbers of each immune cell subset 

within Week 1 Post-TIL PBMCs. Solid black bar = median (1.03). (B-C) A high CD11b:CD8 ratio is associated 

with worse OS (B) and PFS (C).  

 

 
 

 
Figure 26. Survival associations with the number of infused TILs and Pre-treatment myeloid cell frequency.  

(A) Linear regression of the number of TILs infused and the frequency of CD11b+ cells. (n=25) (B) The frequency 

of myeloid cells before lymphodepletion and TIL infusion is not associated with PFS.   

 

 

 
Figure 27. The in vivo persistence of TILs is diminished by an abundance of myeloid cells. 

(A) The sum frequency of TILs at Week 6 post-infusion is negatively correlated with the frequency of myeloid cells 

at Week 1 post-infusion (n=23). (B-C) The Top 50 clones within patients’ TIL infusion product were quantified and 

tracked from infusion to Week 6. Two groups were split based on the median frequency of CD11b+ cells. (C) The 

reduction of the Top 50 TIL clones was greater in the CD11bhigh group.  
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Figure 28. Tracking TIL clonotypes and identification of endogenous T cells 

(A) TCRβ overlap of all TIL clonotypes in melanoma patients that received ACT with TIL. Overlap was compared 

to TILs detected from the time of infusion to Week (Wk) 1 and Wk 6 post-TIL infusion. (B) Sum frequency of all 

endogenous T cells that were not present within each respective patient’s infusion product. The frequency of 

endogenous T cells increased over time as indicated at Wk1 and Wk6 post-TIL infusion. 

 

 

Figure 29. The reduction of TIL persistence in relation to myeloid cell frequency is associated with poor 

survival in melanoma patients.  

(A-B) Kaplan-Meier curves of PFS (A) and OS (B) in patients determined by Week 6 TIL frequency in relation to 

Week 1 CD11b frequency calculated from Figure 27A. 

 

Myeloid derived suppressor cells rapidly expand after treatment with lymphodepleting 

chemotherapy in mice 

The use of Cy/Flu-based regimens are widely applied clinically to induce 

lymphodepletion for ACT (6, 188). To examine endogenous immune cell reconstitution, we 

treated tumor-bearing mice with lymphodepleting doses of Cy/Flu and examined the frequency 

of immune cells in the spleen and bone marrow (BM) at multiple time points. At early time 

points, the cellularity of spleens and BM remained well below baseline, while at 7 days post-

A              B 
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lymphodepletion, total cell numbers were similar to non-treated (NT) mice (Figure 30A-C). 

However, the frequency of myeloid cells was dramatically increased in the spleens and BM of 

lymphodepleted (LD) mice (Figure 30D-F). As expected, the number of T cells remained 

significantly depleted at Day 7 post-lymphodepletion, while CD11b+Ly6ChiLy6G- M-MDSCs 

and CD11b+Ly6C+Ly6G+ PMN-MDSCs were present at 4-5 fold higher than untreated mice 

(Figure 30F-I). A similar trend was exhibited in the BM (Figure 30J-K). Furthermore, sorted Gr-

1+ cells from the spleens of NT and LD mice suppressed T cell proliferation and IFN-γ 

production (Figure 31A-B). We validated these results in mice bearing Panc02 tumors and 

confirmed that T cells were effectively depleted, while MDSCs expanded upon lymphodepleting 

chemotherapy treatment (Figure 31C-D) Together, these data show that lymphodepleting 

chemotherapy induces the accumulation of immunosuppressive myeloid cells. 

MDSCs differentiate from mobilized hematopoietic progenitor cells in mice and humans 

We hypothesized that the elevated frequency of MDSCs post-lymphodepletion may arise 

from an increased number of circulating myeloid progenitor cells that mobilize from the BM 

because cyclophosphamide can mobilize HSPCs (189). We found that Lin-c-kit+Sca-1+ and Lin-

c-kit+ Sca-1- HSPCs were dramatically increased in the spleens 7 days after lymphodepletion but 

were depleted 1 day after treatment compared to NT mice (Figure 32-33). In contrast, BM 

HSPCs remained depleted after treatment, suggesting that the progenitor cells egressed from the 

BM and remained in the periphery (Figure 33C). Likewise, Lin-c-kit+Sca-1-CD16/32-/lowIL-7R- 

common myeloid progenitors (CMPs) and Lin-c-kit+Sca-1-CD16/32highIL-7R- granulocyte-

macrophage progenitors (GMPs) were increased in the spleen at day 7 post-lymphodepletion 

when mice also exhibited peak MDSC expansion (Figure 33D). 
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Figure 30. Lymphodepleting chemotherapy induces the expansion of MDSCs in mice.  

(A-C) Whole cell numbers from spleens (A) and bone marrow extracted from the femurs and tibias (B) from NT or 

LD B16 tumor-bearing mice. (C) Fold change of whole cell numbers compared to control NT mice from 4 

independent experiments. (D-E) Representative frequency of CD11b+ cells of total live cells in the spleen (D) and 

BM (E). (F) Representative gating strategy of MDSC subsets in mice. (G-I) Whole cell numbers of indicated 

immune cell populations in the spleens at respective time points. (G-H) Representative experiments showing the 

depletion of T cells (G) and expansion of MDSC subsets (H) (n=3-4 mice per group). (I) Fold change of whole cell 

numbers compared to control NT mice from 4 independent experiments. (J) Representative experiment showing 

MDSC expansion in BM after lymphodepletion. (K) Fold change of whole cell numbers of MDSCs within BM 

compared to control NT mice from 4 independent experiments.  
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Figure 31. Lymphodepletion-generated MDSCs are suppressive. 
(A-B) MDSCs were isolated from the spleens of untreated or LD mice with B16 tumors. Suppression of pmel T cell 

proliferation determined via 3H incorporation (A) and IFN-γ production (B) after co-culture with MDSCs from NT 

or LD mice. (C) The frequency of CD3+ T cells and CD11b+ myeloid cells were determined in NT mice and LD 

mice bearing Panc02 tumors 7 days post-LD. (D) OT-I T cell proliferation determined via 3H incorporation in 

cultures with MDSCs from NT mice and LD mice bearing Panc02 tumors. 

 

 

To examine the ability of mobilized progenitors to differentiate to MDSCs, we adoptively 

transferred HSPCs collected from lymphodepleted congenic CD45.1+ tumor-bearing mice to 

CD45.2+ recipient tumor-bearing mice that were left untreated or given lymphodepleting Cy/Flu 

before HSPC transfer (Figure 34A). As expected, LD recipient mice exhibited increases in 

endogenous CD45.1-CD11b+ cells and CD45.1- HSPCs and reductions in CD45.1- lymphocytes 

in comparison to NT recipient mice (Figure 34B). The total frequency of donor CD45.1+ cells 

were similar between non-treated and LD recipient mice 7 days after transfer (Figure 34C). 

However, the majority of donor CD45.1+ HSPCs differentiated to CD11b+ cells in LD recipient  
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Figure 32. Gating strategy to identify mouse HSPCs 

 

 

 

 
 

Figure 33. Lymphodepleting chemotherapy mobilizes HSPCs. 

(A) Representative dot plots of Lin-c-kit+ cells in spleens in untreated mice or day 7 post-LD treated 

mice. (B-D) The number of indicated HSPC populations were determined in NT mice and LD within spleens 

(B,D) or BM (C) at day 1 post-LD or day 7 post-LD. 
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Figure 34. Mobilized HSPCs differentiate into MDSCs in lymphodepleted hosts 

(A) Experimental design for (B-G); (n=10 mice per group). (B) Frequency of CD45.1- endogenous leukocytes in 

recipient mice after adoptive transfer. (C) Frequency of total donor CD45.1+ cells in the spleens of recipient mice. 

(D) Representative dot plots showing the percentage of myeloid cells and lymphocytes among donor-derived cells. 

Arrow indicates directionality of subgating with the frequency of parent gates indicated. (E) Frequency of donor-

derived cells in recipient mice after adoptive transfer. (F) Ratio of the number myeloid cells in relation to 

lymphocytes that differentiated from donor CD45.1+ cells. (G) Proportion of donor cells that differentiated to 

MDSCs in recipient mice. 
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mice (Figure 34D). Inversely, lymphocytes (CD3+CD19+NK1.1+CD11b-Ly6C-Ly6G-c-kit-) 

predominated the proportion of CD45.1+ donor-derived cells in NT recipient mice (Figure 34E). 

Furthermore, the ratio of CD11b+ cells relative to lymphocytes that differentiated from donor 

CD45.1+ HSPCs was significantly elevated in LD recipient mice, indicating that the mobilized 

progenitors preferentially differentiate to myeloid cells in a lymphodepleted environment (Figure 

34F). Indeed, M-MDSCs and PMN-MDSCs derived from donor mice were more prevalent in 

LD recipient mice compared to NT recipient mice (Figure 34G).  

In human samples, we confirmed that HSPCs (Lin-CD34+ cells) were increased in 

melanoma patients at Week 1 Post-TIL infusion compared to pre-infusion levels (Figure 35). In 

addition to an increased abundance of Lin-CD34+ cells at Week 1 post-infusion, we determined 

that the phenotype of HSPCs changed after TIL infusion. Nearly, all Lin-CD34+ cells were also 

CD38+, co-expressing CD45RA and/or CD90, which the abundance of CD34+CD38+CD90+ 

triple positive cells increased in patients at the Week 1 Post-TIL blood draw compared to the pre-

treatment PBMCs (Figure 36). We confirmed that immunosuppressive myeloid cells could be 

generated from mobilized CD34+ cells collected from a melanoma patient that received ACT 

with TIL. In this melanoma patient, the frequency of CD34+ cells in PBMCs dramatically 

increased from 0.11% at pre-infusion to 10.8% at Week 1 post-TIL infusion (Figure 37). 

We differentiated the CD34+ cells using tumor-conditioned media (TCM) in addition to 

CC110 (SCF, TPO, Flt3L) in combination with GCSF and successfully generated cells 

resembling CD15+ cells displaying elevated expression of CD11b, LOX-1, CD14, and PD-L1 in 

response to treatment with tumor-conditioned media (TCM) (Figure 38). To determine the 

suppressive capacity of these cells, the tumor cells used to produce the TCM were co-cultured 

with autologous TILs and the in vitro generated suppressor cells at varying ratios. 
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As expected, TILs produced IFN-γ when cultured with the tumor cells alone. However, 

the CD15+ suppressor cells generated in the presence of TCM exhibited an enhanced capacity to 

inhibit IFN-γ production in TIL:Tumor co-cultures in comparison to the suppressor cells 

generated without TCM (Figure 39). Together, these results confirm our findings in murine 

models demonstrating that lymphodepletion-mobilized HSPCs give rise to immunosuppressive 

myeloid cells.  

 

 
Figure 35. HSPCs increase in melanoma patients after treatment with lymphodepleting chemotherapy and 

TIL infusion.  

The number of Lin-CD34+ cells were quantified in the PBMCs of patients prior to and 1-week post-TIL infusion. 

Lin = CD3, CD14, CD15, CD19 CD11b, CD11c, CD56 

 

 

The abrogation of CCR2 in recipient mice does not enhance the efficacy of ACT 

We previously observed that CCL-2, the ligand for CCR2, was elevated in the sera of 

lymphodepleted mice (data not shown). Moreover, the blockade of CCR2 has been reported to 

reduce the accumulation of M-MDSCs in tumor-bearing mice that received lymphodepleting 

doses of cyclophosphamide (190). We first measured the frequency of MDSCs in WT or 

CCR2KO mice bearing B16 tumors treated with or without lymphodepleting Cy/Flu. 
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Figure 36. Phenotype of CD34+ cells in melanoma patients that received ACT with TIL.  

(A) CD38 and CD45RA expression in CD34+ cells. (B) CD38 and CD90 expression in CD34+ cells. (C-D) CD38 

and CD45RA expression among CD34+ cells from melanoma patients in PBMCs at Pre-treatment (C) and Week 1 

post-TIL (D). (E-F) CD38 and CD90 expression among CD34+ cells from melanoma patients at Pre-treatment with 

ACT (E) and Week 1 post-TIL (F). 

 
Figure 37. Frequency of CD34+ in a melanoma patient. Week 1 Post-Treatment CD34+ cells were used to 

generate MDSCs as in Figure 38-39. 
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Figure 38. Differentiation of immunosuppressive myeloid cells from lymphodepletion-mobilized CD34+ cells. 

(A) Detection of cytokines in the TCM collected from a primary melanoma tumor cell line. (B-D) PMN suppressor 

cells were differentiated from CD34+ cells collected the Week 1 post-TIL PBMCs from a patient for 14 days in 

CC110+GCSF. On day 10, cells were refreshed with media containing CC110+GCSF in combination with vehicle 

(RPMI) or TCM from (A). (B) Phenotype of CD15+ PMN suppressor cells differentiated from CD34+ cells at day 14 

of differentiation protocol. (C) Frequency of CD15+ cells of all live cells at day 14. Black=CC110+GCSF+Vehicle, 

Red=CC110+GCSF+TCM. (D) Histograms of indicated myeloid cell markers. Parent gate is CD15+ cells as in (C). 

Gray = FMO, Black=CC110+GCSF+Vehicle, Red=CC110+GCSF+TCM. MFI is indicated adjacent to each 

histogram. 

 

 
Figure 39. MDSCs generated from mobilized CD34+ cells suppress TIL effector function.  

Allogeneic myeloid suppressor cells were differentiated from Lin-CD34+ cells and co-cultured with TILs cultured 

and autologous tumor cells. Suppressor cells were conditioned with or without TCM. IFN-γ production was 

determined by ELISA after 48hrs of culture. 
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In comparison to naïve mice, the frequency of CD11b+Gr-1+ cells were elevated in both WT and 

CCR2KO mice. However, LD WT and CCR2KO mice exhibited increased levels of CD11b+Gr-1+ 

cells (total MDSCs) compared to untreated counterparts (Figure 40A). As expected, CCR2KO 

mice lacked M-MDSCs, however a compensatory increase in PMN-MDSCs was observed in 

comparison to WT LD mice (Figure 40B). Next, we sorted CD11b+Gr-1+ cells from the spleens 

of LD mice and assessed their ability to suppress OT-I T cell proliferation. Indeed, MDSCs from 

both WT and CCR2KO mice potently suppressed T cell proliferation (Figure 40C). Together, 

these data show that lymphodepleting chemotherapy increases MDSCs in CCR2KO mice despite 

the reduction of monocytic cells. 

Because M-MDSCs were reduced in CCR2KO mice, we wanted to determine the effect of 

depleting both MDSC subsets on the infiltration of adoptively transferred T cells. To determine 

this, we used CCR2KO mice to deplete M-MDSCs and Ly6G depleting antibodies (αLy6G) to 

deplete PMN-MDSCs (Figure 41A). Indeed, CCR2KO mice exhibited a significant decrease of 

M-MDSCs within tumors in comparison to WT mice. Moreover, αLy6G effectively depleted 

PMN-MDSCs within tumors in WT and CCR2KO hosts. However, a strong compensatory effect 

was observed in CCR2KO mice characterized by a sharp increase in PMN-MDSCs in comparison 

to WT mice (Figure 41B). Despite, the lack of M-MDSCs and the depletion of PMN-MDSCs, 

we did not observe an increase in the number of adoptively transferred CD90.1+ pmel T cells in 

tumor 48hrs after infusion. Next, we aimed to determine if the efficacy of ACT would be 

enhanced in CCR2KO hosts. First, we observed that the frequency of CD90.1+ pmel T cells were 

similar between WT and CCR2KO recipient mice, suggesting that the lack of M-MDSCs did not 

promote T cell expansion in vivo (Figure 42A). Likewise, tumor growth and the survival of WT 
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and CCR2KO recipient mice were similar (Figure 42B-C). Together, these data demonstrate that 

the efficacy of ACT is not impacted in CCR2KO mice or the lack of M-MDSCs.  

 

Figure 40. MDSC reconstitution in CCR2KO mice.  

(A) CD11b+Gr-1+ cells were measured in naïve mice, or B16 tumor-bearing mice treated with or without 

lymphodepletion. The number of CD11b+Gr-1+ cells in spleens were measured at Day 7 post-LD and normalized to 

naïve mice. (B) Frequency of MDSC subsets in the spleens of WT and CCR2KO mice at Day 7 post-LD. (C) OT-I T 

cell proliferation in co-cultures with MDSCs from the spleens of WT and CCR2KO mice. 
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Figure 41. Assessment of early T cell infiltration after ACT and depletion of MDSCs. 

(A) Experimental design for (B-C). Arrows indicated injection of αLy6G. (B) Frequency of tumor MDSCs after LD, 

ACT, and MDSC depletion. (C) Frequency of adoptively transferred CD90.1+ pmel T cells in B16 tumors. 

 

 

         
 

 

 

 

 

 

 

 

 

 

Figure 42. ACT in CCR2KO mice does not enhance anti-tumor efficacy. 

(A) Frequency of CD90.1+ T cells in the blood 7 days after ACT. (B-C) Tumor growth (B) and survival (C) in mice 

with B16 tumors. 

A A 

B C 
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IL-6 promotes MDSC activity after lymphodepletion treatment 

To identify factors that contribute to MDSC accumulation after lymphodepletion, we 

performed RNA sequencing on PMN-MDSCs and M-MDSCs from NT and LD mice. Ingenuity 

Pathway Analysis (IPA) revealed that multiple functions were enriched due to changes induced 

by lymphodepletion, including cellular movement, hematological system development and 

function, cell cycle, cell death, and survival (Figure 43). We then enriched our dataset using IPA 

upstream regulator analyses and focused on cytokines as regulators (Figure 44). Because IL-6 

enhances immunosuppressive functions and the differentiation in MDSCs (177, 191), we 

investigated the role of IL-6 on MDSCs during lymphodepletion recovery. Indeed, the 

transcriptional alterations induced by lymphodepletion were predicted to be regulated by 

multiple cytokines, including IL-6, in both PMN-MDSCs and M-MDSCs collected from LD 

mice compared to NT mice (Figure 44). Likewise, IL-6 was more abundant in the plasma of 

melanoma patients receiving ACT with TIL at Week 1 post-infusion (Figure 45A). To determine 

the role of IL-6 in ACT models, we lymphodepleted WT and IL-6KO mice bearing B16 tumors 

and measured the frequency of MDSCs. We observed significant increases of MDSCs in LD 

mice, but no difference was observed between WT and IL-6KO mice (Figure 45B). However, the 

ability of MDSCs from IL-6KO LD mice to suppress T cell proliferation was dampened (Figure 

45C). We confirmed these results in mice with a conditional knockout of the IL-6R in myeloid 

cells (IL-6RM-KO) (Figure 46A). Intriguingly, the induction of IL-6R signaling failed to enhance 

the suppressive capacity of WT MDSCs. Likewise, the lack of immunosuppression by IL-6RM-KO 

MDSCs was not rescued upon stimulation with an IL-6/IL-6R chimeric protein (Figure 46B-D). 

Since MDSCs from LD knockout mice were less immunosuppressive, we hypothesized that 

ACT would be more efficacious in IL-6KO recipient mice. Indeed, IL-6KO recipient mice 
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exhibited reduced tumor growth and improved survival after ACT in comparison to WT recipient 

mice (Figure 47A-B). The improved efficacy was associated with an increased frequency of 

circulating donor CD90.1+ pmel T cells (Figure 47C). Similarly, the treatment of ACT in 

combination with IL-6 receptor blocking antibodies (αIL6R) significantly reduced tumor growth 

in comparison to mice that received ACT alone (Figure 48). To confirm MDSC-mediated 

suppression of ACT efficacy, MDSCs were purified from donor WT and IL-6KO lymphodepleted 

mice and co-transferred with pmel T cells (Figure 49A). Despite an initial reduction in tumor 

growth, recipient mice that received a co-transfer of pmel T cells with WT MDSCs exhibited a 

significant acceleration of tumor growth compared to mice that received T cells alone, whereas 

mice co-transferred with IL-6KO MDSCs and T cells exhibited a similar control of tumor growth 

compared to mice that received T cells alone (Figure 49B). Moreover, the percent change in 

tumor growth from the time of infusion was greatest in mice that received pmel T cells and WT 

MDSCs, while tumor growth was stabilized or reduced in most recipient mice that received T 

cells alone or T cells co-transferred with IL-6KO MDSCs (Figure 49C). Collectively, our results 

demonstrate that IL-6 regulates the suppressive capacity of MDSCs that accumulate post-

lymphodepletion and that the efficacy of ACT is enhanced upon blockade of IL-6 signaling.  

Lymphodepleting chemotherapy induces the production of IL-6 in bone marrow 

We established that IL-6 regulates the suppressive capacity of MDSCs in LD mice 

(Figure 45-46). To evaluate IL-6 signaling during recovery after lymphodepletion, we measured 

pSTAT3 in myeloid cells (Figure 50A). At peak expansion (Day 7 post-lymphodepletion), the 

abundance of pSTAT3+ cells were reduced in myeloid cells from LD mice. In contrast, the 
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Figure 43. RNA sequencing on MDSCs isolated from untreated and lymphodepleted tumor-bearing mice.  

(A-B) Volcano plots representing significantly up- and down-regulated genes in MDSCs from LD mice. Dotted 

lines represent the Log2 fold change cutoff of 1.5 and -log10 p-value of p=0.05. Significant genes are shown in red; 

non-significant in grey. (C-D) IPA analysis of functions enriched in MDSCs from lymphodepleted mice over 

MDSCs from untreated tumor-bearing mice.    
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Figure 44. Upstream cytokines regulators of MDSCs from lymphodepleted mice. 

(A-B) IPA upstream regulator analysis enriched in MDSCs from lymphodepleted mice over MDSCs from untreated 

mice. 

 

 
Figure 45. IL-6 promotes the suppressive capacity of post-LD MDSCs 

(A) IL-6 concentration in plasma samples obtained from melanoma patients receiving ACT with TIL (n=12). (B) 

MDSC frequency in the spleens of mice WT and IL-6KO mice (n=3-4 per group). (C) Pmel T cell proliferation 

determined by 3H thymidine incorporation in cultures with MDSCs were purified from NT or LD, WT and IL-6KO 

mice. 

 

 

 

 

 

 

 

 

 

 

   
Figure 46. The induction of IL-6R signaling fails to rescue MDSC suppressive capacity. 

(A) Frequency of MDSC subsets IL-6Rfl/fl and IL-6RM-KO bearing B16 tumors 7 days post-LD. (B) Induction of 

pSTAT3 with IL-6/IL-6R Chimeric protein. (C-D) Pmel T cell proliferation in culture with MDSCs and IL-6/IL-6R 

chimera. (C) Representative histogram. (D) Data summary (n=3/group) 
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Figure 47. The efficacy of ACT is enhanced in IL-6KO recipients.  

(A-B) Tumor growth (A) and survival (B) after LD +/- ACT with pmel T cells in mice with B16 tumors among WT 

or IL-6KO recipient mice (n=8-10 mice per group). (C) Donor pmel T cell frequency in blood of mice from (A-B). 

 

 

 
Figure 48. IL-6R blockade enhances the efficacy of ACT. 

(A) Tumor growth in B16 tumor-bearing LD mice treated with ACT with or without αIL6R blocking antibodies 

(n=8-10 mice per group). (B) Waterfall plot showing percent change in tumor growth in mice from (A) at the 

termination of the experiment. 

A B 
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Figure 49. Co-transfer of MDSCs with T cells  

(A) Experimental design for (B-C). Recipient mice received 2.5x106 pmel T cells alone or in combination with 

2.5x106 MDSCs from lymphodepleted WT or IL-6KO donor mice. (B) Tumor growth for individual mice are shown. 

(C) Waterfall plot showing percent change in tumor growth in mice from at the termination of the experiment. 

 

percentage of pSTAT3+ cells were elevated in myeloid cells at Day 1 post-lymphodepletion 

(Figure 50B). In response to ex vivo IL-6 stimulation, pSTAT3 was elevated at day 1 and day 3 

post-LD compared to cells from NT mice, suggesting that IL-6 may be acting on myeloid cells 

soon after chemotherapy treatment rather than at peak expansion (Figure 50B). We defined that 

CMPs, GMPs, M-MDSCs, and PMN-MDSCs expressed IL-6R (Figure 50C-G). However, the 

expression of the IL-6R was elevated in CMPs and GMPs in the BM of LD mice at Day 1 post-
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lymphodepletion (Figure 50D), while MDSCs in the spleens or BM did not exhibit any change 

the IL-6R expression compared to NT mice (Figure 50E-G). We then identified that BM CD11b+ 

cells were the primary producers of IL-6 in NT or LD mice with B16 tumors, and the proportion 

of IL-6+ cell subsets were similar between both groups (Figure 51A-B). However, all BM-

derived cells produced more IL-6 within 24hrs after lymphodepletion both with and without the 

presence of ex vivo lipopolysaccharide (LPS) stimulation (Figure 51C-D). Although, the 

expression values for lymphocytes and CD45-Lin- cells were lower compared to CD11b+ and 

HSPCs cells. Nevertheless, both CD11b+ cells and Lin-c-kit+ cells had an enhanced production of 

IL-6 post-lymphodepletion. Together, our data shows that lymphodepleting chemotherapy 

induces the expression of IL-6 in BM-derived cells, which may drive the function of MDSCs. 

IL-6 regulates the survival and resistance to Fas-induced apoptosis in lymphodepletion-

induced MDSCs  

To elucidate the effect of IL-6 signaling on the suppressive capacity of MDSCs in LD 

mice, we performed RNA sequencing on MDSC subsets sorted from WT and IL-6KO, NT and 

LD mice (Figure 52). In both MDSC subsets, there were little transcriptional differences between 

MDSCs from WT NT mice in comparison to MDSCs from IL-6KO NT mice. In M-MDSCs, 600 

gene transcripts calculated to be statistically significant were up- or down-regulated among M-

MDSCs from LD mice in comparison to M-MDSCs from WT NT mice. However, there was 

little difference in M-MDSCs when we compared cells from WT LD mice to IL-6KO LD mice. In 

contrast, 146 gene transcripts calculated to be statistically significant were up- or down-regulated 

among PMN-MDSCs from WT LD mice in comparison to PMN-MDSCs from IL-6KO LD mice, 

suggesting that IL-6 may have a broader impact in the development of PMN-MDSCs (Figure 

52A-F). We next performed gene set enrichment analysis on PMN-MDSCs and identified that 
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Figure 50. IL-6R expression in MDSCs and myeloid progenitors 

(A-B) pSTAT3 expression was determined by flow cytometry among splenic myeloid cells collected from NT or 

LD mice treated with or without ex vivo IL-6 stimulation. (A) Representative histogram with MFI values indicated 

adjacent to each histogram. (B) Summarized data from a representative experiment. (C) Representative histogram 

showing IL-6R expression among BM CMPs and GMPs from NT or LD mice at Day 1 Post-LD. (D) Percent of IL-

6R+ CMPs and GMPs at Day 1 and Day 7 Post-LD. (E) Representative histogram of IL-6R expression from Day 7 

post-LD splenic MDSC subsets. (F-G) IL-6R expression was determined on M-MDSCs and PMN-MDSCs from NT 

or LD mice at indicated time points as in the BM (B) and spleen (B). Data is representative of 3 independent 

experiments. 
 

E 
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Figure 51. IL-6 production is induced in the bone marrow by lymphodepleting chemotherapy.  

(A) Experimental design for (B-D). Bone marrow was collected from NT or LD B16-bearing mice and cultured for 

24hrs. (B) Stacked bar chart of intracellular IL-6 expression by CD11b+ myeloid cells, Lin-c-kit+ HSPCs, 

Lymphocytes (CD3+/CD19+/NK1.1+) and CD45-Lin- cells as determined by flow cytometry. (C) Representative 

histograms showing IL-6 expression among individual BM cell subsets with or without ex vivo LPS stimulation. 

MFI is indicated on the right of each histogram. (D) Fold change in IL-6 expression among individual BM cell 

subsets. Data is representative of 2-3 independent experiments. (D) Normalized data is a compilation of 3 

independent experiments with biological replicates shown. Data was normalized to NT or NT+LPS. 

 

pathways and functions associated with apoptosis were significantly enriched in PMN-MDSCs 

from WT LD mice in comparison to PMN-MDSCs from IL-6KO LD mice (Figure 52G-H). 

Indeed, LD mice exhibited an increased frequency of viable MDSCs compared to mice with no 

treatment (Figure 53A). Moreover, MDSCs from LD mice were sensitive to apoptosis mediated 

by T cells, which was blocked by the addition of a FasL blocking antibody (αFasL) (Figure 

A B 

C 

D 
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53B). Because MDSCs can undergo Fas-induced apoptosis (192), we next compared the survival 

of MDSCs from WT and IL-6KO mice. First, we observed that Fas expression was reduced in 

MDSCs from WT LD mice compared to WT NT mice. Conversely, IL-6KO MDSCs from LD 

mice exhibited an increase in Fas expression compared to WT MDSCs from LD mice (Figure 

53C-D). Next, we cultured MDSCs from WT and IL-6KO mice with Fas agonistic antibodies 

(αFas). As expected, MDSCs from WT LD mice exhibited an increased percentage of live cells 

compared to MDSCs from NT mice after culture, even in the presence of αFas. In contrast, the 

percentage of live cells from IL-6KO LD mice was reduced compared to MDSCs from WT LD 

mice both with and without treatment with αFas (Figure 53E). We then determined that the 

frequency of myeloid cells was reduced after treatment with lymphodepleting chemotherapy 

followed by infusion with CD90.1+ pmel T cells (Figure 53F). Specifically, M-MDSCs and 

PMN-MDSCs were reduced in the blood and spleens of lymphodepleted IL-6KO recipient mice 

compared to WT recipient mice (Figure 53G-I). Furthermore, the ratio of PMN-MDSCs to T 

cells was reduced in the spleens of IL-6KO recipient mice in comparison to WT recipient mice 

(Figure 53J). In addition, similar results were observed in LD mice treated in vivo with a 

JAK/STAT3 inhibitor, JSI-124, compared to mice treated with a vehicle control (Figure 54). 

Together, these data indicated that IL-6 regulates MDSC survival and Fas expression after 

lymphodepletion treatment. 

IL-6 signaling during progenitor differentiation to MDSCs is essential for the regulation of 

Fas expression and resistance to apoptosis  

In cells from IL-6R conditional knockout mice, we observed that the rescue of IL-6R 

signaling did not promote the immunosuppressive capacity of MDSCs (Figure 46). Moreover, 

exogenous IL-6 did not enhance the ability human PMN-MDSCs to suppress autologous TILs 
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Figure 52. RNA sequencing of WT and IL-6KO MDSCs from non-treated and lymphodepleted mice.  

(A-B) Venn diagrams demonstrating the number of up- and down-regulated genes among each comparison and the 

overlap between comparisons. (C-F) Volcano plots of significantly altered genes in PMN-MDSCs comparing WT 

vs IL-6KO (C), WT vs WT+LD (D), IL-6KO vs IL-6KO+LD (E), WT+LD vs IL-6KO+LD (F). Dotted lines represent 

cutoffs of 1.5 fold change and log-transformed values of p<0.05. Significant genes are colored in red. (G-H) 

Ingenuity Pathway Analysis on genes enriched in WT+LD PMN-MDSCs over PMN-MDSCs from IL-6KO mice 

treated with lymphodepleting chemotherapy. 
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Figure 53. IL-6 reduces Fas expression in MDSCs that expand post-lymphodepletion.  

(A) Annexin-V and PI staining among MDSCs cultured for 48hrs. (B) Frequency of live MDSCs from 

lymphodepleted mice after 24hrs co-culture with T cells +/- FasL blockade. (C-D) Expression of Fas in PMN-

MDSCs. Compiled data from 3 independent experiments with biological replicates (C) with representative 

histogram (D) are shown. (E) Frequency of live PMN-MDSCs cultured for 24hrs with isotype antibodies or αFas. 

(F) Experiment design for (G-J). (G) Representative dot plots showing donor CD90.1+ pmel T cells and reduced 

CD11b+ cells in IL-6KO recipients 24hrs after infusion. (H-J) Frequency of MDSCs in blood (H) and spleen (I) 

24hrs after ACT. (J) PMN-MDSC : T cell ratio in the spleens of mice 24hrs after ACT. Data is reflective of 2-3 

independent experiments. 
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Figure 54. In vivo JAK/STAT3 inhibition reduces PMN-MDSC survival.  

(A) Experimental design for (B-C). Mice were treated with vehicle or 1mg/kg JSI-124 (indicated with arrows), once 

daily starting 1 day prior to lymphodepleting treatment. Day 7 post-LD, MDSCs from vehicle-treated or JSI-124-

treated mice were cultured for 24hrs. Live cells were determined by Annexin-V and PI negativity. (B) PMN-

MDSCs; (C) M-MDSCs. P values were determined by two-tailed t-test. Data is representative of two independent 

experiments (n=5 mice per group). 

 

 (Figure 55-56). Hence, we postulated that IL-6 may be most relevant during the differentiation 

of MDSCs from mobilized progenitors. To test our hypothesis, we collected mobilized HSPCs 

from LD mice and differentiated these cells to MDSCs in vitro. MDSCs were generated in the 

presence of GMCSF alone or GMCSF in combination with IL-6 for 4 days (Figure 57A). 

MDSCs that were differentiated from HSPCs in the presence of GMCSF and IL-6 exhibited 

reduced Fas expression compared to MDSCs differentiated with GMCSF alone (Figure 57B-C). 

Next, we cultured the MDSCs collected on Day 4 for an additional 24hrs in media containing IL-

6. Intriguingly, the addition of IL-6 failed to reduce Fas expression in MDSCs generated from 

HSPCs in the presence of GMCSF alone or GMCSF and IL-6, suggesting that the expression of 

A 
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Figure 55. Exogenous IL-6 does not alter MDSC suppressive capacity.  

(A) IL-6R surface expression on PMN-MDSCs in Week 1 Post-TIL PBMCs from melanoma patient 1 (left) and 

melanoma patient 2 (right). (B) PMN-MDSCs purified from Week 1 Post-TIL PBMCs and co-cultured with donor T 

cells in media with or without 40ng/mL IL-6. T cell proliferation was determined after 72hrs of culture. P values 

were determined by two-tailed t-test. Technical replicates are shown. 

 

 
Figure 56. IL-6 does not promote MDSC suppression of TILs 

IL-6 was added to co-cultures of TILs and PMN-MDSCs collected from a melanoma patient. TIL proliferation was 

measured by 3H thymidine incorporation after 72hrs of culture. 
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Fas in MDSCs may be inherited from parental cells (Figure 57D). In parallel, we cultured the 

MDSCs collected on Day 4 and exposed them to Fas agonistic antibodies with or without IL-6. 

Consistent with the reduction of Fas expression in MDSCs generated with GMCSF and IL-6, 

survival was superior in response to Fas agonism compared to MDSCs generated with GMCSF 

alone (Figure 57E). Notably, the addition of IL-6 to MDSCs in this post-differentiation culture 

only had a modest effect on the viability of cells or promoting any resistance to Fas agonism in 

cells differentiated in either GMCSF alone or the combination of GMCSF with IL-6 (Figure 

57E). We validated these results by differentiating mobilized HSPCs from WT and IL-6KO mice 

that were treated with lymphodepleting chemotherapy with the same protocol as in Figure 57A. 

GMCSF-generated MDSCs from mobilized IL-6KO HSPCs exhibited a reduced viability in T cell 

co-cultures in the presence of an isotype antibody and αFasL compared to MDSCs derived from 

WT mice (Figure 58A). In contrast, MDSC viability was similar between cells differentiated 

from WT and IL-6KO HSPCs with the addition of GMCSF and IL-6. This suggests that the IL-6 

signal received during differentiation conferred resistance to apoptosis even in IL-6 naïve cells 

that were collected from IL-6KO mice (Figure 58B). Additionally, Fas expression was reduced in 

GMCSF+IL-6-generated MDSCs compared to MDSCs generated with GMCSF alone from both 

WT and IL-6KO progenitors (Figure 58C). Importantly, the suppressive capacity of MDSCs 

generated from mobilized IL-6KO HSPCs was impaired compared to MDSCs differentiated from 

WT HSPCs. When T cells were cultured alone, the blockade of FasL enhanced T cell 

proliferation. Despite this enhancement of T cell proliferation, MDSCs potently suppressed T 

cells, which was enhanced upon FasL blockade. Specifically, weakly suppressive MDSCs 

generated from IL-6KO HSPCs became highly suppressive upon FasL blockade, indicating that 

the ability of MDSCs to survive during contact with T cells was critical to mediate 
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immunosuppressive functions (Figure 58D). Together, these data demonstrate that IL-6 

differentiation signals regulate the survival and Fas expression patterns of post-lymphodepletion 

MDSCs that are necessary to resist apoptotic signals from T cells and mount immunosuppressive 

functions. 

 

 
 

Figure 57. IL-6 differentiation signals reduces Fas expression and increases MDSC survival. 

(A) Experimental design for (B-E). (B-C) Fas expression in MDSCs measured on day 4 of differentiation protocol. 

(B) Representative histogram showing Fas expression, (C) summarized data. (D) Differentiated MDSCs were 

collected on day 4 and then cultured for an additional 24hrs with or without IL-6. Fas expression is shown. (E) The 

ratio of dead:live cells after differentiated MDSCs were cultured for 24hrs in the indicated conditions. Data is 

reflective of 2-3 independent experiments. Each data point is representative of cells pooled from 5 mice; 20 mice 

total. 
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Figure 58. IL-6 differentiation signals promote resistance to Fas-induced cell death 

(A-B) MDSCs were differentiated from Lin-c-kit+ cells as in Figure 57. (A-B) Percent viability in MDSCs after 24hr 

co-culture with T cells and isotype antibodies or αFasL. (C) Fas expression measured in MDSCs differentiated from 

WT or IL-6KO HSPCs. (D) T cell proliferation in co-cultures with in vitro-generated MDSCs at a 1:8 ratio as in +/- 

FasL blockade. dotted lines represent the mean of pmel T cell proliferation upon culture with cognate peptide with 

isotype antibodies (black) or FasL blocking antibodies (red). Data is reflective of 2-3 independent experiments.  

 

 

 

A B 

C 

D 



www.manaraa.com

99 

 

 
Figure 59. Graphical Abstract 

Under homeostatic conditions, a balance of lymphocytes and myeloid cells, including MDSCs, is maintained. The 

administration of lymphodepleting chemotherapy acutely eliminates the majority of circulating and BM leukocytes. 

Early after chemotherapy treatment, HSPCs are mobilized from the bone marrow. Simultaneously, T cells are 

adoptively transferred following lymphodepletion. As the endogenous immune system recovers, myeloid-biased 

HSPCs expand in the periphery and BM and rapidly differentiate into MDSCs. This massive and concurrent 

accumulation of MDSCs diminishes the efficacy of ACT. However, the blockade of IL-6 differentiation signals 

disrupts the survival capacity of MDSCs that is inherited from parental HSPCs. As a result, the lack of IL-6 limits 

the survival of MDSCs, particularly when in contact with T cells. Ultimately, this leads to an enhancement of T cell 

persistence and anti-tumor efficacy of ACT.   
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Discussion 

Melanoma patient responses to ACT with TILs have been associated with T cell-intrinsic 

differences amongst patients including the number of TIL infused, expression of B and T-

lymphocyte attenuator (BTLA), in vivo T cell persistence, and the magnitude of IFN-γ 

production by TIL (8, 71, 193). Our data suggest that lymphodepleting chemotherapy induces the 

rapid expansion of MDSCs that ultimately impact the function of adoptively transferred T cells 

leading to diminished therapeutic efficacy and reduced TIL persistence. Importantly, the overlap 

of lymphodepleting regimens in patients treated with ACT with TILs, CAR-T cells, and T cells 

with transgenic-TCRs is highly suggestive that similar mechanisms of MDSC-mediated 

suppression may take place in most ACT settings (6, 46, 194). We show that the repertoire of T 

cell clonotypes were diminished in patients that had high frequencies of CD11b+ myeloid cells, 

which was ultimately associated with poor long-term survival (Figure 27). It is feasible that the 

most abundant adoptively transferred TIL clones have a higher probability of interacting with 

and being suppressed by MDSCs. However, we cannot rule out that characteristic differences 

among individual TIL clones, such as the prevalence of tumor-reactive clones or phenotypic 

memory characteristics, could make certain T cells more susceptible to MDSC suppression (62, 

195). Hence, a deeper understanding of the interactions between MDSCs and adoptively 

transferred T cells is necessary to guide strategies to render T cells more resistant to myeloid-

mediated immune suppression and promote in vivo T cell persistence. 

Cyclophosphamide, a common chemotherapeutic drug used in lymphodepleting 

regimens, has been described to have immunomodulatory effects that promote 

immunosuppressive myeloid cell accumulation (190, 196). In breast cancer patients, the 

frequency of Lin-HLA-DR-CD11b+CD33+ MDSCs increased after treatment with a doxorubicin-
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cyclophosphamide chemotherapy regimen (180). In mouse models, lymphodepleting doses of 

total body irradiation (197) and cessation of treatment with Gr-1 depleting antibodies (198) 

promoted the subsequent accumulation of myeloid cells. Hence, it is likely that non-

myeloablative immunodepleting methods can lead to “reactive myelopoiesis” (175). While 

previous studies have shown that cyclophosphamide leads to the accumulation of MDSCs, little 

is known about the mechanisms that drive the expansion of MDSCs during the recovery phase 

after lymphodepletion treatment, particularly in human patients. Moreover, the 

immunosuppressive capacity of granulocytes and monocytes that accumulate in non-malignant 

pathological settings of emergency myelopoiesis have not been examined (184, 185). Nearly all 

patients in our study exhibited a significant elevation of myeloid cells after lymphodepletion and 

ACT which potently suppressed donor T cells and autologous TILs (Figure 19). It is known that 

during tumor progression, myeloid cells acquire immunosuppressive characteristics in part by a 

skewing that occurs during myeloid progenitor commitment (179, 181). Intriguingly, we 

observed a strong myelopoietic bias when HSPCs were transferred to lymphodepleted recipients 

(Figure 34), which suggests that host-derived factors potentiate myeloid differentiation in 

response to lymphodepleting chemotherapy. Tumor-derived factors such as retinoic acid can 

skew the differentiation of M-MDSCs to macrophages at the expense of generating dendritic 

cells, and the administration of all-trans retinoic acid (ATRA) can reverse this effect (178, 199). 

However, early precursors such as GMPs and CMPs need to be targeted to skew the 

development of terminally differentiated PMN-MDSCs (179, 200). CMPs and GMPs are rare 

populations of cells often restricted to the BM space, which may make it a challenge to 

manipulate differentiation signals specific to these cell populations (201). Interestingly, the rapid 

increase of myeloid progenitors that we observed shortly after lymphodepleting chemotherapy 
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treatment may provide a therapeutic window to target the differentiation of myeloid cells when 

myelopoietic signals are most relevant. Hence, the manipulation of differentiation signals and the 

exploitation of progenitor cell plasticity to modulate the immunosuppressive capacity of 

daughter cells, including MDSCs, during ACT regimens is an attractive therapeutic strategy and 

warrants further investigation.  

We aimed to determine what factors could drive the massive accumulation of MDSCs 

after lymphodepleting chemotherapy. A previous screen of sera taken from mice treated with a 

lymphodepleting dose of total body irradiation revealed that CCL2 was elevated post-LD (data 

not shown). We investigated whether targeting the CCL2-CCR2 axis could attenuate the 

accumulation of MDSCs post-LD and enhance the efficacy of ACT. A previous study identified 

that the blockade of CCR2 after the administration of a lymphodepleting dose of 

cyclophosphamide effectively reduced the accumulation of M-MDSCs and enhanced the efficacy 

of ACT with CD4+ T cells (190). Moreover, PMN cells that expanded after cyclophosphamide 

treatment lacked immunosuppressive capabilities on CD4+ T cells suggesting that 

cyclophosphamide treatment promoted the accumulation of neutrophils rather than PMN-

MDSCs. However, our findings contrasted these results in the following manner: 1. CCR2KO 

mice lack M-MDSCs, but undergo a compensatory accumulation of PMN-MDSCs, 2. Splenic 

MDSCs from CCR2KO mice which are predominately PMN-MDSCs potently suppress CD8+ T 

cell proliferation. Importantly, we show that both M-MDSCs and PMN-MDSCs from melanoma 

and NSCLC patients suppressed donor T cell and autologous TIL proliferation and IFN-γ 

production. We acknowledge that differences in experimental tumor models, including the strain 

of mice and lymphodepleting regimen, and the ability of MDSCs to suppress CD4+ T cells could 

contribute to the conflicting findings between our study and the results of Ding et. al. (190, 202). 
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In support of our study, the inhibition of c-MET effectively reduces the accumulation of PMN-

MDSCs that accumulate after treatment with cyclophosphamide and ACT with CD8+ pmel T 

cells leading to tumor regression in mice (203). Thus, the accumulation of PMN-MDSCs after 

lymphodepleting chemotherapy limits the efficacy of ACT with CD8+ T cells.  

We directed our attention to explore other strategies to target MDSCs in the setting of 

ACT because the compensatory increase of MDSCs after myeloid depletion regimens and the 

mechanisms associated with anti-CCL2 treatment cessation strongly contribute to tumor 

progression and therapy resistance in multiple settings (158, 198, 204-206). Instead, we aimed to 

investigate factors that could dictate the immunosuppressive capacity of MDSCs. IL-6 and 

STAT3 are known to promote the function, differentiation, and survival of MDSCs (177, 207). 

In this study, we show that lymphodepletion prompted bone marrow progenitor mobilization and 

that IL-6 was required for promoting survival signals during differentiation. Likewise, IL-6 has 

been reported to simultaneously drive the expansion of HSPCs, enhance myelopoiesis, and block 

lymphopoiesis (208, 209). Notably, we describe that the role of IL-6 goes beyond providing an 

enhancement of immunosuppressive capabilities during the differentiation from progenitor cells 

(177). Our functional studies in murine models and RNA sequencing indicated that post-

lymphodepletion MDSCs exhibited distinct biological and transcriptional characteristics 

compared to MDSCs from non-treated mice. The inhibition of IL-6 signals in murine models 

improved the efficacy of ACT by causing the dysregulation of survival signals and the 

sensitization of MDSCs to Fas-induced apoptosis. In the setting of an acute induction of 

lymphopenia, we show that a cytokine signal, like IL-6, is critical during progenitor 

differentiation. IL-6 imparted an improved survival capacity and reduced Fas expression in 

daughter cells during the differentiation from progenitors (Figure 58). We show that the addition 
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of IL-6 to already differentiated MDSCs failed to improve the viability of cells or reduce Fas 

expression. Together, these data indicated that survival patterns can be inherited from parental 

hematopoietic cells which impact downstream immunosuppressive capabilities of MDSCs. 

Hence, MDSCs have the potential to be targeted uniquely in the setting of ACT by targeting 

factors specifically induced by lymphodepleting regimens which can impact the differentiation 

trajectory of mobilized HSPCs.  

We showed that lymphodepleting chemotherapy enhances IL-6 production in BM-

derived myeloid cells and HSPCs early after treatment. Subsequently, the IL-6 differentiation 

signal was critical for promoting MDSC resistance to T cell-mediated apoptosis. We found that a 

single infusion of MDSCs along with T cells was sufficient to accelerate tumor growth in 

comparison to mice that received T cells alone. Importantly, the transfer of IL-6 naïve MDSCs 

taken from IL-6KO donor mice failed to negatively impact the efficacy of ACT in IL-6 competent 

recipients (Figure 49). This provides further support that IL-6 impacts MDSC function indirectly 

during their differentiation from progenitors, rather than on cells in a post-differentiation state. In 

addition to IL-6, our RNA sequencing experiments revealed that several upstream regulators, 

including tumor necrosis factor alpha (TNFα) and GMCSF (CSF2) may drive the expansion and 

function of MDSCs that expand after treatment with lymphodepleting chemotherapy. TNFα can 

promote the survival of HSPCs and promote the accumulation of myeloid cells in response to 

stimulation with polyinosinic:polycytidylic acid (poly I:C), LPS, or treatment with 5-fluorouracil 

(5-FU) (210). Meanwhile, GMCSF has been shown to promote extramedullary myelopoiesis 

within inflamed joints of mice with experimental spondyloarthritis (186). Interestingly, TNFα 

and GMCSF promoted a myelopoietic bias in these experimental settings, which aligns with the 

differentiation bias of HSPCs that we observed in lymphodepleted mice (Figure 34). 
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Furthermore, the overexpression of IL-1β in murine breast cancer cells can generate MDSCs that 

are more resistant to Fas-induced cell death (211). While we did not examine other factors in this 

current study, we are actively investigating the role of other cytokines and growth factors in the 

regulation of lymphodepletion-driven myelopoiesis. Collectively, the determination of key host-

factor signals and the characterization of myelopoietic niches during lymphodepletion-driven 

myelopoiesis could identify new therapeutic targets with the potential to enhance patient 

responses to ACT.  

In patients receiving CAR-T cells, the onset of cytokine release syndrome (CRS) was 

attributed to the production of IL-6 and IL-1β by monocytes after CAR-T cell infusion and that 

the symptoms of CRS could be ameliorated by the administration of IL-6R blocking antibodies 

and/or IL-1 receptor antagonists (212). However, it is unclear which host factors induced by 

lymphodepleting chemotherapy, including IL-6 and IL-1β, are responsible for the induction of 

myeloid-mediated immunosuppression the during ACT regimens. Notably, patients that receive 

ACT with TIL do not exhibit symptoms of CRS, but rather endure toxicities related to 

lymphodepleting chemotherapy and/or bolus high dose IL-2 administration (49). Thus, the role 

of IL-6 beyond its role in the induction of CRS remains unclear in a variety of ACT settings. 

However, the ongoing clinical use of IL-6R blocking antibodies in patients receiving CD19-

directed CAR-T cells provides feasibility for this treatment to be used prophylactically to reduce 

myeloid-mediated immunosuppression in patients receiving any modality of ACT in 

combination with lymphodepleting chemotherapy (213). We acknowledge that immunological 

abnormalities associated with pre-existing cytopenias, late-onset neutropenia, and a history of 

HSCT which are frequently observed in patients with hematological malignancies could have an 

impact on myelopoiesis in patients receiving CD19-directed CAR-T cells (214, 215). Thus, 
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differences associated with lymphodepletion-driven myelopoiesis between patients with solid 

tumors and hematological malignancies remain unclear. Moreover, the impact of MDSCs on 

patient outcomes after CAR-T cell infusion has not been thoroughly evaluated and is an active 

point of investigation for our group.  

This study is characterized by important limitations. For example, the small patient 

sample size limits the statistical power of our study. Hence, future prospective studies that 

analyze MDSC accumulation and its impact on the survival of patients receiving ACT are 

necessary. Importantly, we focused on peripheral immune suppression during lymphodepletion 

recovery in this study. It is well established that tumor-derived factors can enhance the 

suppressive capacity of MDSCs (216). We also demonstrated this by generating 

immunosuppressive myeloid cells from a patient’s CD34+ cells in tumor-condition medium 

(Figure 37-39). However, the lack of patient tumor biopsies post-TIL infusion limited our ability 

to evaluate therapy-related changes in the tumor microenvironment. Hence, future studies in 

murine models and patient specimens will evaluate the differentiation and infiltration of HSPCs 

and myeloid cells in the tumor microenvironment after treatment with lymphodepleting 

chemotherapy and its ensuing impact on the efficacy of ACT.  

While the therapeutic efficacy of ACT and the persistence of infused T cells are 

associated with lymphodepletion-induced increases of T cell homeostatic cytokines (26, 36, 44), 

we highlight an opposing mechanism in that lymphodepleting chemotherapy regimens prompt 

the mobilization of HSPCs followed by dramatic expansion of immunosuppressive myeloid 

cells. With the evidence provided in our study, we propose that the full benefits of pre-

conditioning lymphodepletion regimens may be achieved by inhibiting counter 

immunosuppressive reactions, potentially through skewing the differentiation of progenitor cells. 
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Accordingly, we report that the modulation of MDSCs by blocking IL-6 differentiation signals is 

a feasible approach to enhance therapeutic outcomes in patients receiving ACT with TIL and 

provides support for future clinical trials.   

Methods 

Study Design 

The primary research objective was to evaluate mechanisms that drive the expansion and 

function of immunosuppressive myeloid cells in patients receiving ACT and relevant murine 

models. For human specimen analysis, the data shown includes all acquired data for the patient 

cohorts for this study. For murine experiments, animals were randomized after tumor inoculation 

and experiments were repeated between two and four times as noted.  

Patient Samples 

Patient lymphodepletion was carried out via administration of cyclophosphamide (60 

mg/kg/day) and mesna (20 mg/kg) were given intravenously on day −7 and day −6 relative to the 

anticipated TIL infusion date. Fludarabine (25 mg/m2) was given daily intravenously from day 

−5 to day −1. The TIL infusion was administered on day 0 and a 720,000-IU/kg IV bolus of IL-2 

(aldesleukin, Prometheus Laboratories Inc., San Diego, CA, USA) was given every 8–16 h for 

up to 15 doses, beginning 12–16 h after TIL infusion. Preparation of TIL was performed as 

previously described (8). Briefly, surgically resected tumors were minced to 1mm pieces and 

placed into individual wells of a 24 well plate containing 6000IU/mL IL-2. TILs were expanded 

for up to 5 weeks and then tested for IFN-γ production in co-cultures with autologous tumor cell 

lines or cryopreserved tumor digest cell suspensions. IFN-γ+ TILs underwent a rapid expansion 

protocol (REP) (8). For TIL-MDSC co-cultures, cryopreserved Post-REP TIL were thawed and 
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rested for 48-72hrs in AIM-V (ThermoFisher) containing 3000 IU/mL IL-2 prior to co-culture. 

Myeloid cells were sorted from fresh PBMCs collected from melanoma or non-small cell lung 

cancer (NSCLC) patients. Sorted MDSCs were cultured with autologous TIL or donor T cells as 

indicated below.  

Myeloid cell isolation for functional assays 

For human specimens, PMN-MDSCs were purified from fresh PBMCs using CD15 

Microbeads (Miltenyi Biotec). M-MDSCs were purified by the negative selection PBMCs by 

labeling with biotinylated antibodies for CD3, CD19, CD56, and HLA-DR. The negative fraction 

was then labeled with CD14 Microbeads (Miltenyi Biotec). MDSCs isolated from human 

specimens were cultured with donor T cells or autologous TIL. T cells were stimulated using 

Dynabeads™ Human T-Activator CD3/CD28 for T Cell Expansion and Activation 

(ThermoFisher Scientific, 11132D). When available, TILs were co-cultured with autologous 

tumor cell lines and varying concentrations of MDSCs. For murine specimens, MDSCs were 

purified from spleens using anti-Gr-1 biotinylated antibodies, anti-biotin microbeads, or 

streptavidin microbeads (Miltenyi Biotec) with a purity >90% after elution through magnetic 

columns. CD8+ T cells were purified from the spleens of pmel or OT-I mice using EasySep™ 

Mouse CD8+ T Cell Isolation Kit (StemCell Technologies). Gr-1+ cells were co-cultured with 

pmel or OT-I T cells for 72 hours in round-bottom 96 well plates. Co-cultures were incubated in 

media containing 1μg/mL of cognate peptide, gp10025-33 or OVASIINFEKL (both from AnaSpec). T 

cell proliferation was assessed by CellTrace Violet dilution (ThermoFisher Scientific) or 3H 

thymidine incorporation. For 3H thymidine incorporation, 3H thymidine was added at the final 18 

hours of culture and cells were harvested at 72hrs. For detection of IFN-γ, supernatants were 
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collected after 72hrs of culture and concentrations were measured by ELISA (BD or R&D 

Systems).  

Generation of human melanoma cell line and tumor conditioned medium 

A surgically resected melanoma tumor was subjected to a TIL expansion protocol as 

described above. The remaining tumor was digested in media containing collagenase (type II and 

type IV), hyaluronidase, and DNAase (Fisher Scientific Co., Pittsburgh, PA, USA) for 1 hour at 

37C and mechanical dissociation by GentleMACS (Miltenyi Biotec). After digestion, the cell 

suspension was filtered to remove undigested tumor and connective tissue to generate a single-

cell suspension. Cells were suspended in complete media (CM) containing RPMI media 

supplemented with 10% heat-inactivated FBS, 0.1 mM nonessential amino acids, 1 mM sodium 

pyruvate, 2 mM fresh L-glutamine, 100 mg/ml streptomycin, 100 U/ml penicillin, 50 mg/ml 

gentamicin, 0.5 mg/ml fungizone (all from Life Technologies, Rockville, MD), and 0.05 mM 2-

ME (Sigma-Aldrich, St. Louis, MO) and grown to confluency. Adherent cells were passaged 

multiple times. To generate tumor conditioned medium (TCM), tumor cells were grown to 

confluency in CM and dissociated using Cell Dissociation Buffer, Enzyme-Free, PBS 

(ThermoFisher). Cells were pelleted and washed twice with PBS before suspending in serum-

free RPMI at 1e6 cells/mL and cultured in a 24 well plate for 24hrs. Cell-free supernatant was 

harvested and stored at -80C until ready for use. Cytokine concentrations were determined by 

LEGENDplex™ HU Essential Immune Response Panel (13-plex) (BioLegend). 

 

MDSC differentiation 

For murine specimens, Lin-c-kit+ cells were collected from the spleens of lymphodepleted 

mice. 1x106 cells were cultured in 6 well plates for 4 days in 4mL of media containing 40ng/mL 
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recombinant murine GMCSF (Peprotech) or GMCSF in combination with 40ng/mL recombinant 

murine IL-6 (Peprotech). At the end of culture, Gr-1+ cells were isolated and used for functional 

analysis. For human specimens, CD34+ cells were purified from cryopreserved patient PBMCs 

using CD34 MicroBead kit, human (Miltenyi Biotec) with a purity >95%. 5x104 CD34+ cells 

were cultured in 6 well plates in StemSpanTM SFEMII supplemented with StemSpanTM CC110 

(StemCell Technologies), 100 mg/ml streptomycin, and 100 U/ml penicillin. SFEMII+CC110 

media was supplemented with 40ng/mL recombinant human GCSF (Peprotech). CD34+ cells 

were cultured for the first 7 days in media containing cytokines and CC110 diluted 1:100 per the 

manufacturer recommendation. For the final 7 days of culture, CC110 was diluted 1:1000 from 

the manufacturer stock concentration. Media was refreshed every 4 days by addition of fresh 

media and cytokines to each well. For the final 4 days of culture, media was refreshed containing 

cytokines plus 30% RPMI (Vehicle) or TCM. At the end of the culture (14 days total), cells were 

harvested and co-cultured with TILs for functional analysis.  

Mouse models and treatment 

Female C57BL/6 mice (6–8 weeks old) were purchased from Charles River Laboratories 

(Wilmington, MA). B6.129S2-Il6tm1Kopf/J (IL-6KO) and B6.129S4-Ccr2tm1Ifc/J (CCR2KO) mice 

were purchased from Jackson Laboratories (Bar Harbor, ME). To generate a conditional IL-6R 

knockout, B6;SJL-Il6ratm1.1Drew/J mice (Jackson Laboratories) were bred with B6.129P2-

Lyz2tm1(cre)Ifo/J mice (Jackson Laboratories). Il6ra+/fl heterozygotes, hemizygous for Lyz2-cre 

were bred with homozygous Il6rafl/fl  mice to generate mice that were Il6rafl/flLyz2cre (denoted as 

IL-6RM-KO; M=myeloid). Cre- littermates (Il6rafl/fl) were used as control mice. Female B6.SJL-

Ptprca Pepcb/BoyJ CD45.1+ (6-8 weeks old) were purchased from Jackson Laboratories. Pmel 

and OT-I were bred and housed at the Animal Research Facility of the H. Lee Moffitt Cancer 
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Center and Research Institute. Mice were humanely euthanized by CO2 inhalation according to 

the American Veterinary Medical Association Guidelines. Mice were observed daily and were 

humanely euthanized if a solitary subcutaneous tumor exceeded 400 cm2 in area or mice showed 

signs referable to metastatic cancer.  

Murine Cell Lines 

B16 melanoma (obtained from ATCC) and Panc02 pancreatic cancer (obtained from 

ATCC) cell lines, were cultured in complete media (CM): RPMI media supplemented with 10% 

heat-inactivated FBS, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 2 mM fresh L-

glutamine, 100 mg/ml streptomycin, 100 U/ml penicillin, 50 mg/ml gentamicin, 0.5 mg/ml 

fungizone (all from Life Technologies, Rockville, MD), and 0.05 mM 2-ME (Sigma-Aldrich, St. 

Louis, MO). The cell lines tested negative for mycoplasma contamination. All cell lines were 

passaged less than 10 times after initial revival from frozen stocks. All cell lines were validated 

in core facilities prior to use. 

In vitro T cell culture, lymphodepletion, adoptive transfer, and in vivo treatment 

T cells were isolated from the spleens of pmel EasySep™ Mouse CD8+ T Cell Isolation 

Kit (StemCell Technologies). Pmel T cells were cultured for 3 days in CM containing 10 IU/ml 

IL-2 and 5 ug/ml gp10025–33 peptide. Recipient mice with established tumors were 

lymphodepleted by intraperitoneal injection of 200mg/kg cyclophosphamide (Baxter) followed 

by 100mg/kg fludarabine (Sagent Pharmaceuticals) 24hrs after cyclophosphamide injection. 

Adoptive transfer of 2.5x106 activated pmel T cells were infused intravenously via tail vein 

injection 24hrs after fludarabine administration. For the adoptive transfer of MDSCs, B16 tumor-

bearing mice with established tumors were given lymphodepleting chemotherapy. Seven days 

after treatment, recipient mice were lymphodepleted and MDSCs were isolated from the spleens 
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of mice and co-transferred at a 1:1 ratio with activated pmel T cells 24hrs after fludarabine 

administration. IL-2 (2.5e5 IU) was given i.p. following T cell injection, continuing every 12 

hours for three days, for a total of six injections. Following this treatment, tumor size was 

measured and recorded every 3-4 days.  

For the adoptive transfer of HSPCs, CD45.1+ mice with established B16 tumors were 

given lymphodepleting treatment. Seven days after treatment, HSPCs were purified from spleens 

by depleting Lin+ cells using Direct Lineage Depletion Kit (Miltenyi Biotec) followed by 

positive selection using CD117 microbeads (Miltenyi Biotec). Purity of Lin-c-kit+ cells was 

>90%. 5x106 CD45.1+Lin-c-kit+ cells were infused intravenously via tail vein injection to 

CD45.2+ C57BL/6 mice. 

For IL-6R blockade, mice were administered via intraperitoneal injection of 1.0mg of 

anti-IL-6R antibody (15A7, BioXCell) one day prior to cyclophosphamide injection, followed by 

0.5mg anti-IL-6R antibody every 5 days for the duration of the experiment. For JAK2/STAT3 

inhibition, lymphodepleted tumor-bearing mice were administered 1mg/kg JSI-124 (Cayman 

Chemical) by intraperitoneal injection once daily starting one day prior to cyclophosphamide 

injection. DMSO was the carrier and used as a vehicle control.   

Flow Cytometry  

Spleens and bone marrow were harvested under sterile conditions. Spleens were 

homogenized by applying pressure to tissue on 100μm cell strainers. BM was harvested by 

flushing media with a needle and syringe through femurs and tibias. Bones were then crushed 

and the resulting BM was collected. Single-cell suspensions were prepared, and red blood cells 

were removed using red blood cell lysis buffer (BioLegend). The resulting suspension was 

passed through a 70μm cell strainer and washed once with PBS. Cells were resuspended in to a 
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concentration of 0.5-1x106 cells/mL for flow cytometric analysis in FACS Buffer containing 

PBS, 5% fetal bovine serum, 1mM Ethylenediaminetetraacetic acid (EDTA) (Sigma Aldrich), 

and 0.1% sodium azide (Sigma Aldrich). Cell viability was measured by staining cell 

suspensions with ZombieNIR (BioLegend). Prior to surface staining, cells were incubated with 

Fc Shield (TonboBiosciences) for murine specimens and Fc Blocker (Miltenyi Biotec) for human 

specimens. For surface staining of murine specimens, cells were stained in FACS buffer with the 

following antibodies: CD3 (145-2C11), CD4 (GK1.5), CD8 (53-6.7), CD19 (1D3), NK1.1 

(PK136), CD11b (M1/70), Ly6G (1A8), Ly6C (HK1.4), F4/80 (BM8), c-kit (2B8), Sca-1 (D7), 

CD16/32 (93), IL-7R (A7R34), IL-6R (D7715A7) (all from BioLegend), Fas (Jo2) (BD 

Biosciences), and Lineage Cocktail (TonboBiosciences). For human specimens, cell surface 

staining was conducted with the following antibodies: CD3 (145-2C11), CD4 (RPA-T4), CD8 

(RPA-T8), CD19 (HIB19), CD56 (B159), CD11c (Bly6), CD14 (MoP9), CD15 (HI98), CD11b 

(ICRF44), CD33 (P67-6), HLA-DR (G46-6), IL-6R (M5), CD34 (581), CD38 (HIT2), CD45RA 

(HI100), CD90 (5E10) (all from BD Biosciences), and LOX-1 (15C4), PD-L1 (29E-2A3) (from 

BioLegend). Cells were acquired by LSR II or FACS Celesta (BD Biosciences), and the data 

were analyzed with FlowJo (Tree Star). 

IL-6 detection and in vitro stimulation of IL-6 signaling 

IL-6 was measured in plasma samples collected from melanoma patients that received 

ACT with TIL at the Moffitt Cancer Center using Human IL-6 Quantikine ELISA Kit (R&D 

Systems). For human specimens, 40ng/mL recombinant human IL-6 (Peprotech) was added to T 

cell / TIL co-cultures with patient-derived MDSCs. For murine specimens, 40ng/mL 

recombinant murine IL-6 (Peprotech) was added to MDSC : T cell co-cultures. Where indicated, 

200ng/mL recombinant mouse IL-6/IL-6R alpha protein chimera (R&D Systems) was added to 
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co-cultures containing MDSCs collected from IL-6RM-KO mice. For intracellular IL-6 staining, 

BM cells were incubated in CM with and without 1mg/mL lipopolysaccharide (LPS) for 18hrs in 

24 well plates at a concentration of 5x105 cells per well. During the final 6hrs of culture, 

500ng/mL brefeldin A solution (BioLegend) was added to each well. After 6hrs of incubation 

with brefeldin A, non-adherent cells were collected. Adherent cells were collected after 

incubation with 1mM EDTA solution and gentle scraping. Adherent cells were pooled with non-

adherent cells. Cells were stained with ZombieNIR, Fc Shield, and cell surface markers followed 

by fixation and permeabilization via Cytofix/Cytoperm kit (BD Biosciences). Cells were stained 

with anti-IL-6 antibodies, washed twice, and then data were acquired immediately by FACS 

Celesta (BD Biosciences). For pSTAT3 (pY705) staining, cells were incubated in serum-free 

RPMI for 30 minutes at 37°C. To induce STAT3 phosphorylation, cells were incubated with 

100ng/mL IL-6 (Peprotech) or 200ng/ml recombinant mouse IL-6/IL-6R alpha protein chimera 

(R&D Systems). Cells were washed and stained for cells surface markers. BD Phosflow 

Lyse/Fix Buffer was added to each sample for fixation followed by permeabilizaton wit BD 

Phosflow Perm Buffer III. Permeabilized cells were incubated with antibodies specific for 

pSTAT3 for 30 minutes at room temperature. Cells were washed three times and then data were 

acquired immediately for flow cytometric analysis.  

MDSC apoptosis 

Purified MDSCs were cultured for 24-48hrs in 24 well plates at 5x105-1x106 cells per 

well in media containing 1μg/mL purified hamster anti-mouse Fas (CD95), (Jo2, BD 

Biosciences) or isotype Armenian Hamster IgG2 (BD Biosciences). In MDSC co-cultures with 

activated T cells, cells were incubated with 10μg/mL purified anti-mouse CD178 (FasL), 
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(MFL3, BioLegend) or isotype mouse IgG1 (BioLegend). Apoptosis was measured by Annexin-

V and PI staining (ThermoFisher Scientific) and assessed by flow cytometric analysis.  

TCR-beta sequencing and analysis 

DNA extraction was performed using the DNeasy Blood & Tissue Kit (Qiagen) on Post-

REP TIL, apheresis samples collected 6 weeks post-TIL infusion, and patient PBMCs. Samples 

were subjected to T cell receptor (TCR) clonotyping and TCR-beta CDR3 regions were analyzed 

using the ImmunoSEQTM Analyzer (Adaptive Biotechnologies). TIL frequency was determined 

by identifying unique V-beta and J-beta genes identified within each sample and calculating the 

sum frequency of productive rearrangements among the total detected in both Post-REP TIL and 

post-TIL infusion PBMCs. A persistent TIL clone in post-TIL infusion PBMCs or apheresis 

products were determined by the detection of the same rearrangements initially identified in 

Post-REP TIL. The fold change of TIL frequency was determined by identifying overlapping 

unique rearrangements detected in Post-REP TIL and post-TIL infusion PBMCs and calculating 

their respective proportion of the total detected rearrangements. Fold change was calculated 

between the sum productive frequency of overlapping rearrangements detected at week-6 post-

TIL infusion by the frequency of the same rearrangements detected in Post-REP TIL and 

correlated with CD11b+ cell frequency.  

RNA-Sequencing 

M-MDSCs (CD11b+Ly6C+Ly6G-) and PMN-MDSCs (CD11b+Ly6C+Ly6G+) were sorted 

by FACS Aria SORP (BD Biosciences) with a purity >99%. Sorted cells were washed and stored 

as dry pellets. RNA was extracted by RNeasy Mini Kit (Qiagen). Paired-end RNA sequencing 

reads were subjected to adaptor trimming and quality assessment before being aligned to mouse 

reference genome mm10 using STAR v2.5.3a [PMID: 23104886]. Quantification of read counts 

https://webmail.moffitt.org/owa/redir.aspx?C=4RnlckhfMespF_uT2EPy9b1RY0ZegGW2c8CJT5WFcflRfvJQUhfXCA..&URL=https%3a%2f%2fwww.ncbi.nlm.nih.gov%2fpubmed%2f23104886
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aligned to the region associated with each gene was performed using HTSeq v0.6.1 

[PMID:25260700] based on RefSeq gene model. Read counts of all samples were normalized 

based on library size estimation using the R/Bioconductor package DESeq2 v1.6.3 

[PMID: 25516281]. Differential gene expression between different conditions was performed by 

serial dispersion estimation and statistical model fitting procedures implemented in DESeq2. 

Genes with Benjamini-Hochberg corrected p-value of less than 0.05 were considered to be 

significantly differentially expressed. Significant genes affected by at least two-fold were 

analyzed for enrichment of upstream regulators using QIAGEN’s Ingenuity Pathway Analysis 

software (IPA, QIAGEN, www.qiagen.com/ingenuity, “canonical pathways”; “diseases and 

functions”; “upstream regulators” options). For upstream regulator analysis, cytokine upstream 

regulators were filtered and sorted by p-value for the dataset overlap between molecules known 

to be regulated by that given cytokine. 

Statistical analysis 

Graphs were generated using GraphPad Prism software. Graphs represent mean values 

with SEM. P values were calculated in each respective Figure where statistical tests were 

indicated. Retrospective analysis for patient survival was performed. Mantel-Cox p-values are 

shown on each respective Kaplan-Meier plot. Patient groups for Kaplan-Meier survival plots 

were established by determining the median cutoff by frequency distribution analysis. The 

median follow-up for survival analysis was determined by reverse Kaplan-Meier analysis 

(Median follow-up = 22 months). P values and R2 values were determined by two-tailed Pearson 

r correlation test. For mouse-tumor growth studies, tumor growth curves are shown as mean with 

SEM and significance was determined by 2-way ANOVA and Sidak’s multiple comparison’s 

test. Mice were randomized after tumor cell implantation into respective treatment groups. For 

https://webmail.moffitt.org/owa/redir.aspx?C=hm2iFiEK0_UdIaX0WAFhQAbXJSZffherrprxy3Wu8btRfvJQUhfXCA..&URL=https%3a%2f%2fwww.ncbi.nlm.nih.gov%2fpubmed%2f25260700
https://webmail.moffitt.org/owa/redir.aspx?C=Kf0YpWHSamLo6UBoYWSfPxVwhaAjjbLyFY_ZUvJyfxFRfvJQUhfXCA..&URL=https%3a%2f%2fwww.ncbi.nlm.nih.gov%2fpubmed%2f25516281
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all other experiments, data were compared using either an unpaired 2-tailed Student’s t-test 

corrected for multiple comparisons by a Bonferroni adjustment or Welch’s correction. *=P<0.05; 

**=P<0.01; ***=P<0.001; ****=P<0.0001. 

Study Approval 

All animal experiments were approved by the University of South Florida Institutional 

Animal Care and Use Committee and performed in accordance with the U.S. Public Health 

Service policy and National Research Council guidelines. Studies were performed under 

approved Institutional Review Board (IRB) laboratory protocols at the H. Lee Moffitt Cancer 

Center (Tampa, FL). TILs, PBMCs, and autologous tumors were collected from melanoma 

patients or PBMCs from NSCLC tumor patients as part of TIL ACT clinical trials. All samples 

were de-identified prior to use in research studies. All patients signed approved consent forms. 

Specimens were obtained from patients that were enrolled in the following clinical trials: 

Vemurafenib With Lymphodepletion Plus Adoptive Cell Transfer & High Dose IL-2 Metastatic 

Melanoma, 16992, NCT01659151, Ipilimumab With Lymphodepletion Plus Adoptive Cell 

Transfer and High Dose IL-2 in Melanoma Mets Pts, 17057, NCT01701674, Combining PD-1 

Blockade, CD137 Agonism and Adoptive Cell Therapy for Metastatic Melanoma, 18377, 

NCT02652455, Nivolumab and Tumor Infiltrating Lymphocytes (TIL) in Advanced Non-Small 

Cell Lung Cancer, 19122,  NCT03215810. 
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CHAPTER FOUR 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 

In recent years, many studies have shown the importance of the coordination between the 

innate and adaptive immune system in the eradication of tumors, particularly in the application 

of immunotherapeutics. In these studies, we have demonstrated that 41BB agonists do not act 

solely on T cells to promote TIL expansion and the elimination of tumor cells (Chapter 2). 

Rather, 41BB agonists may act indirectly on APCs by enhancing the interaction of myeloid 

41BBL with 41BB+ T cells and/or polarizing myeloid cells towards an immunostimulatory 

phenotype. In mouse models, the intratumoral administration of 41BB agonistic antibodies 

remodeled the myeloid-tumor milieu and increased the capacity of tumor-associated myeloid 

cells to potentiate T cell responses. In human tumor explants, 41BB agonists promoted TIL 

expansion and tumor reactivity. However, our mechanistic studies on human myeloid cells 

revealed an emphasis on 41BBL playing a larger role in promoting APC maturation, even in the 

presence of 41BB agonists. Specifically, the stimulation of 41BBL, but not 41BB, enhanced the 

maturation of myeloid cells and their ability to stimulate TIL proliferation. This is in partial 

contrast to our previous study that demonstrated that 41BB agonistic antibodies enhance DC 

maturation, including the expression of 41BB (96). However, the functional relevance of 41BB 

was not evaluated in that study. In the current study, we did not observe 41BB expression in 

myeloid cells from a primary melanoma tumor or in conditioned monocytes taken from PBMCs. 

Thus, we acknowledge the possibility that 41BB expression on subsets of APCs could have a 

functional impact in the presence of 41BB agonists that we did not capture in this study. 
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However, the maturation stimuli provided by 41BBL activation, but not 41BB agonists, in 

myeloid cells is suggestive that 41BBL may play a larger role in generating immunostimulatory 

APCs. We believe that both the 41BB-41BBL axis and the activity of tumor-associated APCs 

likely play critical roles in the “Enrichment” of tumor-reactive TILs. Together, the work outlined 

in Chapter 2 poses many interesting questions such as: (1) Does 41BB activate human myeloid 

cells? And do 41BB agonists truly activate myeloid cells directly? Or indirectly by enhancing the 

signal transduction through 41BBL and bidirectional signaling with 41BB? and (2) How do 

constituent tumor infiltrating immune cells contribute to the expansion of TILs? Do APCs or B 

cells provide the co-stimulation necessary to promote the expansion of TILs? APCs appear to be 

important for the early emigration and expansion of TILs from a tumor fragment in vitro. Our 

group has observed that the single addition of 41BB agonists at the initiation of a TIL expansion 

culture yields remarkably similar results to cultures where 41BB agonists are added at the same 

concentration throughout the 4 week culture. This is highly suggestive that the tumor 

microenvironment may play a role in the initiation of TIL expansion from tumor fragments. We 

reason that the co-stimulatory signal provided by 41BB agonists is null once TILs have 

emigrated from tumor fragments and are no longer in proximity to other tumor associated 

immune cell populations. Recent studies have demonstrated that the presence of tertiary 

lymphoid structures and the prevalence of B cells within tumors are advantageous to patients 

receiving immune checkpoint blockade therapy (217-219). Collectively, it is feasible that a 

supportive and organized immune network within tumors is essential for the expansion and 

activity of tumor-reactive TILs in vivo and ex vivo. Future studies will need to address these 

questions to better understand the complexity of the tumor microenvironment during the ex vivo 

expansion of TILs and the mechanistic activity of 41BB agonists.  
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Despite the extensive evidence that demonstrates the benefit of lymphodepleting 

chemotherapy in promoting clinical responses and/or the in vivo persistence of T cells after 

infusion, the work described in Chapter 3 highlights a concomitant immunosuppressive 

mechanism that restricts the efficacy of ACT. It is likely that the expansion of MDSCs within the 

first two weeks after T cell infusion negates the full advantageous effect of lymphodepleting 

chemotherapy provided by the availability of homeostatic cytokines, such as IL-7 and IL-15. 

Thus, this work emphasizes the importance of “host-conditioning” in forging a niche to achieve 

durable responses to ACT in patients with cancer. Specifically, a high abundance of MDSCs 

correlated with the reduced persistence of TILs in melanoma patients and was associated with 

poor survival. This profound effect on dampening the efficacy of ACT warrants further 

investigation into how the immune microenvironment in tumors is reshaped during recovery 

after lymphodepleting chemotherapy. How does this change to the tumor microenvironment 

dictate anti-tumor immune responses after ACT? And do MDSCs rapidly accumulate in tumors 

post-lymphodepletion? Interestingly, residual immune cells within tumors may resist death upon 

chemotherapy treatment. For instance, TRM cells within tumors can survive clinically relevant 

doses of irradiation and mediate tumor control thereafter (220). It is unclear if endogenous 

chemo-resistant T cells act in conjunction with infused T cells upon adoptive transfer. 

Nevertheless, this introduces the possibility that reconstituting immune cells, pre-existent chemo-

resistant immune populations that reside in tumors, and adoptively transferred T cells can mount 

a coordinated attack against tumors. Our group has preliminary data that MDSCs rapidly 

accumulate in tumors after treatment with lymphodepleting chemotherapy and we are currently 

investigating the impact of an increased MDSC abundance within tumors after lymphodepletion 

and ACT to address these questions.  
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HSPCs appear to be a critical source of MDSCs after treatment with lymphodepleting 

chemotherapy. We demonstrate that the lack of IL-6 shunts the differentiation of progenitors to 

MDSCs that exhibit a diminished survival capacity. These results imply that lymphodepletion-

mobilized HSPCs can be reprogrammed and raises an intriguing question: Can the differentiation 

trajectory of these HSPCs be altered to generate more immunostimulatory myeloid cells at the 

expense of generating MDSCs? Previous reports have demonstrated the importance of DCs 

during recovery after lymphodepleting treatment (221, 222), and the potentiation of anti-tumor T 

cell responses is severely abrogated in models that lack conventional DCs (223-225). Moreover, 

the administration of Flt3L can increase the differentiation of DC precursors towards CD103+ 

cDCs, while G-CSF antagonizes this developmental pathway of myelopoiesis and favors the 

accumulation of MDSCs (226). Thus, it is feasible to skew the fate of HSPCs with the goal of 

promoting immune cell populations that potentiate anti-tumor immunity. However, it is unclear 

how the lymphodepleted host environment dictates the differentiation of HSPCs and dendritic 

cell precursors towards generating immunostimulatory DCs. The administration of cytokines 

after ACT with the goal of promoting favorable myeloid cell populations during immune 

recovery after lymphodepletion has not been rigorously explored. Thus, we propose that 

treatment with DC promoting regimens (e.g. Flt3L, αCD40) and/or the neutralization of MDSC-

inducing cytokines (e.g. IL-6, G-CSF), are valid strategies to skew the differentiation of HSPCs 

in lymphodepleted hosts with the goal of promoting anti-tumor immunity evoked during ACT 

treatment strategies.  

Future clinical trials will need to prospectively examine the role of HSPCs and MDSCs in 

patients receiving ACT. Interestingly, ACT with human TILs is feasible to model in 

immunocompromised mice engineered to stably express human IL-2 (227). However, modeling 
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MDSCs in these mice is not easily achieved. Humanizing mice with human CD34+ 

hematopoietic cells can recapitulate lymphocyte populations in vivo, but these mice lack a fully 

functional myeloid compartment, particularly granulocytes (212, 228). Thus, it is challenging to 

model human reactive myelopoiesis and the impact of MDSCs within humanized mice. 

However, murine MDSCs can suppress human T cells in vivo (19). Hence, it is possible to model 

the immunosuppressive role of murine MDSCs on adoptively transferred human TILs. 

Furthermore, we developed a protocol to generate PMN-MDSC-like cells from mobilized CD34+ 

cells that effectively suppressed TIL IFN-γ production (Figure 37-39). Thus, serial infusions of 

in vitro generated human MDSCs after the transfer of human TILs into autologous tumor-

bearing mice is a strategy that could effectively model human reactive myelopoiesis and is an 

undertaking currently in development by our group.   

In conclusion, our work advances the knowledge associated with immunological 

responses that relate to ACT regimens and highlights novel treatment combinations that can 

enhance the efficacy of ACT. Specifically, the activity of 41BB agonists resulting in the 

enrichment and expansion of tumor-reactive T cells both in vitro and in vivo are aided by 

constituent myeloid cells. Moreover, we describe that the full benefits of host-conditioning via 

lymphodepletion and the efficacy of ACT are dampened by a concomitant accumulation of 

MDSCs, which define this as a key resistance mechanism.  Collectively, an increased 

understanding of the mechanisms and specific functions of myeloid cells in all stages of ACT 

will profoundly impact the therapeutic success and translation of T cell-based immunotherapies.  
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